ABSTRACT: It is well-known that every $n \times n$ Stieltjes matrix has an inverse which is an $n \times n$ nonsingular symmetric matrix with nonnegative entries, and it is also easily seen that the converse of this statement fails in general to be true for $n > 2$. In the preceding paper by S. Martínez, G. Michon, and J. San Martín, such a converse result is in fact shown to be true for the new class of strictly ultrametric matrices. Here, we give a simpler proof of their basic result, using more familiar tools from linear algebra.