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Abstract

The complete factorization of Chebyshev polynomials, of the �rst and sec-

ond kind, into irreducible factors over the integers Z is described. Conditions

are given for determining when a Chebyshev polynomial is divisible by another.

And, if non-zero, the remainder is again a Chebyshev polynomial, up to a sign.

Algorithms are also speci�ed to �nd two in�nite sets of �elds Zp where a given

Chebyshev polynomial factors completely into linear factors and to obtain the

factors. The results also lead to the assertion: An odd integer n > 0 is prime

if and only if the Chebyshev polynomial of the �rst kind Tn(x), divided by x, is

irreducible over the integers.

�Partially supported by CAPES, Brazil, under grant BEX 0744/96-4
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1 Introduction

Chebyshev polynomials are of great importance in many areas of mathematics, partic-

ularly approximation theory. Numerous articles and books have been written about

this topic. Analytical properties of Chebyshev polynomials are well understood, but

algebraic properties less so. Reported here are several algebraic properties of Cheby-

shev polynomials including factorization and irreducibility. By extending a result of

H. J. Hsiao [7], we characterize the complete factorization of Chebyshev polynomi-

als into irreducible factors over the integers Z. Conditions for determining when a

Chebyshev polynomials is divisible by another are developed. It is also shown that

the remainder produced by Euclidean division of two Chebyshev polynomials is again

a Chebyshev polynomial, up to a sign. Also studied is the factorization of Chebyshev

polynomials over �nite �elds. Given any Chebyshev polynomial, two in�nite sets
of primes p can be found such that Zp contains all the roots of the polynomial. A
procedure for �nding the modular roots is also outlined.

2 Chebyshev Polynomials

For easy reference, the de�nitions and certain basic properties of the Chebyshev
polynomials are presented. The properties are needed to prove the our main results.
The Chebyshev polynomials of the �rst kind Tn(x) may be de�ned by the following
recurrence relation. Set T0(x) = 1 and T1(x) = x, then

Tn(x) = 2xTn�1(x)� Tn�2(x); n = 2; 3; : : : (1)

Alternatively, they may be de�ned as

Tn(x) = cos n(arccos x); (2)

where 0 � arccosx � �. The roots of Tn(x) are real, distinct, within the interval
[0,1], and given by the following closed formula.

�k = cos
(2k � 1)

n

�

2
k = 1; : : : ; n: (3)

It is easy to see also that the roots �k are symmetric with respect to the line x = 0.
In other words, if x is a root of Tn(x), then so is �x. For factorization purposes, the

decomposition properties

Tmn(x) = Tm(Tn(x)); m; n � 0 (4)

Tm(x)Tn(x) =
1

2

�
Tm+n(x) + Tjm�nj(x)

�
; m; n � 0 (5)

are very useful. They can be proven using trigonometric identities [13, pg. 5]. We
can also de�ne T�n(x) as follows:

T�n(x) = cos�n(arccos x) = cos n(arccosx) = Tn(x): (6)
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The Chebyshev polynomials of the second kind are de�ned by setting U0(x) =

1; U1(x) = 2x and the recurrence relation

Un(x) = 2xUn�1(x)� Un�2(x); n = 2; 3 : : : : (7)

They also may be de�ned by

Un(x) =
1

n+ 1
T 0
n+1(x) =

sin ((n+ 1) arccos x)

sin(arccos x)
: (8)

It is easy to see that Un(x) are integral polynomials of degree n. Its roots are all real,

distinct, symmetric with respect to the line x = 0 and are given by the expression

�k = cos
k�

n+ 1
; k = 1; : : : ; n: (9)

Useful decomposition properties for the U polynomials include the following [14, pg.
97].

Umn�1(x) = Um�1(Tn(x))Un�1(x); m; n > 0 (10)

Tn(x)Um�1(x) =
1

2
(Um+n�1(x) + Um�n�1(x)) ; m > n > 0: (11)

To extend the de�nition of Chebyshev polynomials of the second kind for negative n,
we notice that for n > 1

U�n(x) =
1

�n+ 1
T 0
�n+1 = �

1

n� 1
T 0
�(n�1)(x) = �

1

n� 1
T 0
(n�1)(x) = �Un�2(x): (12)

For convenience, we de�ne U�1(x) = 0. There are many fascinating properties of the
Chebyshev polynomials and the reader is encouraged to look the excellent books by
T. Rivlin [13] and M. Snyder [14].

3 Integral Factorization

H. J. Hsiao [7] gave a complete factorization of Chebyshev polynomials of the �rst
kind Tn(x), determining which roots should be grouped together to yield irreducible
factors with integer coe�cients. Here, a similar result for the Chebyshev polynomials

of the second kind Un(x) is derived. With a slight change in notation, Hsiao's result

is the following

Theorem 1 (Hsiao) Let n > 1 be an integer. Then

Tn(x) = 2n�1
Y
h

Dh(x);

where h � n runs through all odd positive divisors of n and

Dh(x) =
nY

k=1
(2k�1;n)=h

(x� �k) (13)

are irreducible polynomials over the rationals.
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Applying the same method, we prove a similar result for the Chebyshev polynomials

of the second kind U(n; x). Consider a �xed integer n � 2. Let h � n be a positive

divisor of 2n + 2 and lh the number of elements in the set

Sh = fk : (k; 2n+ 2) = h; 1 � k � ng:

It is easy to see that lh = #(Sh) = �((2n + 2)=h)=2. Now let

Eh(x) = 2lh
nY

k=1
(k;2n+2)=h

(x� �k); (14)

where �k are the zeros of Un(x) de�ned in equation (9).

Theorem 2 For any integer n � 2, Un(x) has the factorization

Un(x) =
Y
h

Eh(x);

where h � n runs through all positive divisors of 2n+ 2. The Eh are irreducible over

the integers.

Proof: From D. H. Lehmer [9] we know: If L > 2 and gcd(k; L) = 1 then 2 cos 2k�
L

is

algebraic of degree �(L)=2. Setting k = 1 and L = 2n + 2, we obtain that 2 cos �
(n+1)

is algebraic of degree �(2n + 2)=2, or that �1 is algebraic of degree �(2n + 2)=2.
From the proof of Lehmer's result we also see that all �k with (k; 2n + 2) = 1 are
roots of the same irreducible polynomial. Multiplying this polynomial by 2l1, where
l1 = �(2n + 2)=2, we obtain that E1(x) is an integral polynomial irreducible over Z.
Let h > 1 be a divisor of 2n + 2. Consider all 1 � k � n with (k; 2n + 2) = h.

For each such k there exist an k=h � i � bn=hc such that (i; (2n + 2)=h) = 1
and conversely. So by the same argument of the previous paragraph, all the �k, with
(k; 2n+2) = h are roots of the same irreducible (rational) polynomial E0

h(x) of degree

lh = �((2n + 2)=h)=2. Multiplying E0
h(x) by 2lh we obtain the integral polynomial

Eh(x). A root �k of Un(x) is a root of a unique Eh(x) where h = (k; 2n + 2). 2

With theorems 1 and 2, one can group the roots a Chebyshev polynomials to obtain
its irreducible factors. Example: Suppose n = 6. D1(x) is formed by taking the

roots �1; �3; �4; and �6, whereas D3(x) is obtaining by collecting �2 and �5. Similarly,
E1(x) and E2(x) are obtained by taking the roots �1; �3; �5 and �2; �4; �6, respectively.

Distributing the powers of 2 accordingly, we obtain the integral factorizations:

T6(x) =
�
2x2 � 1

� �
16x4 � 16x2 + 1

�

U6(x) =
�
8x3 � 4x2 � 4x + 1

� �
8x3 + 4x2 � 4x � 1

�
Two corollaries follow immediate from theorems 1 and 2.

Corollary 1 Let n be a positive integer.
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(1) D1(x) is the irreducible factor of Tn(x) of largest degree = �(n).

(2) E1(x) is the irreducible factor of Un(x) of largest degree = �(2n+ 2)=2.

Corollary 2 Let n be a positive integer.

(1) The number of irreducible factors of Tn(x) equals the number of odd divisors

h � n of n.

(2) The number of irreducible factors of Un(x) equals the number of divisors h � n

of 2n + 2.

Then, a third corollary can be deduced.

Corollary 3 Let n be a positive integer.

(1) Tn(x) is irreducible if and only if n is a power of two.

(2) Un(x) is reducible for all n > 1.

Proof: The only odd divisor of a power of two is 1. If n is not a power of two, then
n has at least two odd divisors. This proves (1). To prove (2) we observe that for any
n > 1, 1 and 2 are divisors of 2n+ 2, so Un(x) has at least two irreducible factors. 2

Lemma 1 Let p be an odd prime. The polynomial Tp(x)=x is irreducible.

Proof: If we write
Tp(x) = tpx

p + � � � t1x;

then the leading coe�cient tp is

tp = 2p�1 for p > 0;

the trailing coe�cient is
t1 = (�1)(p�1)=2p

All other coe�cients 1 are given by

tp�(2k+1) = 0; k = 0; : : : ; b(p� 1)=2c

tp�2k = (�1)k
bp=2cX
j=k

 
p

2j

! 
j

k

!
; k = 0; : : : ; bp=2c :

The leading coe�cient of the polynomial Tp(x)=x is 2p�1 and its independent co-

e�cient is (�1)(p�1)=2p. It is easy to see, by inspecting the closed formula for the

coe�cients of Tp, that the remaining coe�cients are also divisible by p. The irre-
ducibility follows by the Eisenstein's criterion. 2 We are now ready to state the

following theorem

1See Rivlin [13] for more detailed derivation of the closed formula of the coe�cients.



M. O. Rayes, V. Trevisan and P. S. Wang { Chebyshev Polynomials 6

Theorem 3 Let n be an odd positive integer. Then n is a prime if and only Tn(x)

x
is

irreducible over the integers.

Proof: If n is prime, then it is clear from Lemma 1 that Tn(x)

x
satis�es Eisenstein's

irreducibility criteria. Now suppose that
Tn(x)

x
is irreducible in Z[x]. Corollary 2

states that the number of irreducible factors of Tn(x) equals the number of odd

divisors h <= n of n. Since
Tn(x)

x
is irreducible, it follows that Tn(x) has exactly two

irreducible factors:

Tn(x) = x

 
Tn(x)

x

!
:

Hence, n is prime. 2

4 Division Properties

The division properties of Chebyshev polynomials Tn(x) and Un(x) are characterized.
Criteria to determine when a Chebyshev polynomials is divisible by another are given.
We also prove that Chebyshev polynomials are (essentially) closed under division.
Speci�cally, we show that the remainder of dividing two Chebyshev polynomials is,

up to a sign, another Chebyshev polynomial.

4.1 Divisors of Tn(x)

The following property may be proven by applying the decomposition property (4).

Property 1 Let n > 1 be an integer. If h is any odd divisor of n, then Tn=h(x) is a
divisor of Tn(x).

Let Tm(x) and Tn(x) be two Chebyshev polynomials of the �rst kind. Performing the
Euclidean division we obtain integral quotient and remainder polynomials q(x) and
r(x) satisfying

Tm(x) = q(x)Tn(x) + r(x); deg(r) < deg(Tn): (15)

The q(x) and r(x) can be determined using the result,

Property 2 Let m � n be two positive integers. The polynomials q(x) and r(x)

satisfying the Euclidean division (15) are given by

q(x) = 2
lX

k=1

(�1)kTm�(2k�1)n(x)

r(x) = (�1)lTjm�2lnj(x);

if there is an integer l � 1 satisfying (2l � 1)n < m � 2ln, otherwise

q(x) = 2
l�1X
k=1

(�1)kTm�(2k�1)n(x) + (�1)l�1

r(x) = 0;
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where l satis�es m = (2l � 1)n.

Proof: Replacing m by m�n in equation (5), and using the extended de�nition (6),

we have

Tm(x) = 2 Tn(x) Tm�n(x)� Tm�2n(x); integers m;n: (16)

Let l be the only positive integer satisfying (2l � 1)n � m � 2ln. Applying the

decomposition formula (16) l � 1 times, we deduce

Tm(x) = 2Tn(x)
n
Tm�n(x)� Tm�3n(x) + � � �+ (�1)l�1Tm�(2l�3)n(x)

o
+(�1)l�1Tm�(2l�2)n(x):

If (2l � 1)n < m � 2ln, then deg(Tn(x)) < deg(Tm�(2l�2)n(x)) and we can apply

property (17) once more, proving the �rst case. On the other hand, if m = (2l� 1)n,

then m� (2l � 2)n = �n. It follows that r(x) = 0 and the second case is proved. 2
From the above property, we see that the remainder of two Chebyshev polynomials of
the �rst kind is either zero or another Chebyshev polynomials of the �rst kind (up to

a sign). We may also deduce from property 2 that if Tn(x) is a divisor of Tm(x) then
n is an odd divisor of m. This statement may be seen as the converse of property 1.
The following theorem summarizes results of this section.

Theorem 4 For integers 0 < n � m, Tn(x) is a divisor of Tm(x) if and only if

m = (2l � 1)n for some integer l > 1. Otherwise, the remainder of the Euclidean

division of Tm(x) by Tn(x) is given by r(x) = (�1)lTjm�2nlj(x), where l is the smallest

positive integer satisfying jm� 2nlj < n.

4.2 Divisors of Un(x)

By applying the decomposition property 10, we obtain

Property 3 Un(x) is a divisor of Um if there exists an integer l > 0 such that

m = ln+ l � 1.

Proof: Um(x) = Ul(n+1)�1(x) = Ul�1(Tn(x))Un(x). 2 To determine the Euclidean
division of Um by Un, we use the extended de�nition for negative indices of Chebyshev

polynomials and applying equation (11) with m + n � 1 replaced by m and m � 1

replaced by n.

Um(x) = 2Tm�n(x)Un(x)� U2n�m(x); integers m;n: (17)

Because U�1(x) = 0, the above works for 2n � m = �1. For m = n, the formula

still holds and can be written as Um(x) = (2Tm�n(x) � 1)Un(x). Also notice that
2n�m � n and if 2n�m � �1 we have the remainder and quotient determined. If,

on the other hand, 2n�m � �2, we may apply the extended de�nition for U2n�m(x).

Summarizing, we have

Um(x) =

(
2Tm�n(x)Un(x)� U2n�m; if n � m � 2m+ 1
2Tm�n(x)Un(x) + Um�2n�2; if 2n + 2 � m < 3n + 2

(18)
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If m � 3n + 2, we apply again the formula given by equation (17). In general, we

have

Property 4 Let m � n be positive integers. If there is an integer l � 0 satisfying

(2l + 1)n + 2l � m � (2l + 2)n + 2l + 1; then

Um(x) = 2Un(x)
lX

k=0

Tm�(2k+1)n�2k(x)� U2(l+1)n�m�2l(x);

otherwise

Um(x) = 2Un(x)
lX

k=0

Tm�(2k+1)n�2k(x) + Um�2(l+1)n�2(l+1)(x);

where m satis�es (2l + 2)n+ 2l + 2 � m < (2l + 3)n+ 2l + 2;

When m = (2l + 1)n+ 2l, the above equation can be rewritten as

Um(x) = Un(x)

 
2

lX
k=0

Tm�(2k+1)n�2k(x)� 1

!
;

and we have, from property 3, zero remainder. If m = (2l + 2)n + 2l + 1, we again
have zero remainder (because U�1(x) = 0). In all other cases, the �rst term of the
equations given in property 4 determines the quotient of the Euclidean division of
Um by Un, while the second term gives the (nonzero) remainder. Using the extended

de�nition (12), we have proved the following

Theorem 5 Let m � n be two positive integers. Um(x) is a multiple of Un(x) if and
only if m = (l + 1)n + l for some integer l � 0. Otherwise, the remainder of the

Euclidean division of Um(x) by Un(x) is given by r(x) = �U2(l+1)n�m�2l(x), where

l � 0 satis�es (l + 1)n+ l < m < (l+ 3)n + l + 2.

Example: Consider m = 33 and n = 4. As 30 = 6:4 + 6 � 33 < 7:4 + 6 = 34, we
use the second formula of property 4, determining that

U33(x) = 2U4(x)(T29(x) + T19(x) + T9(x)) + U3(x)

5 Modular Factorization

We now consider the factorization of Chebyshev polynomials over �nite �elds Zp.

Speci�cally, we show the existence of primes p for which the Tn(x) (or Un(x)) factors
into linear factors in Zp. Let �k be the roots of Tn(x) de�ned in equation (3), for

k = 1; : : : ; n, for some some �xed n. Notice that �k = cos 2�
4n
(2k � 1), or

�k =

�
ei

2�
4n

�2k�1
+
�
e�i 2�

4n

�2k�1
2

=
w2k�1 + w�2k+1

2
;



M. O. Rayes, V. Trevisan and P. S. Wang { Chebyshev Polynomials 9

where w = e
i2�
4n is a primitive complex (4n)th root of unity. Consider the �eld Q(w),

the rationals adjoined by w. We know by de�nition that

Q(w) =
n
(a0=b0) + (a1=b1)w + � � �+ (as�1=bs�1)w

s�1 : aj; bj 2 Z
o
;

where s = [Q(w) : Q] is the degree of the extension �eld Q(w) over Q. It is well

known that s = �(4n). As a remark, we observe that Lehmer's result [9] shows that

[Q(w) : Q(w + 1=w)] = 2. Let p be an odd prime. We de�ne

Qp(w) =
n
(a0=b0) + (a1=b1)w + � � � + (as�1=bs�1)w

s�1 : aj; bj 2 Z; p 6 jbj
o
:

It is easy to see that Qp(w) is a ring. Moreover, all the powers of w, including negative

ones, belong to Qp(w). Let GF (q) be a �nite �eld of characteristic p with q elements

(q is some power of p). Let us assume that GF (q) has a primitive (4n)th root of unity
�. De�ning the natural ring homomorphism

	 : Z �! Zp

by 	(a) = a mod p, we can extend 	 to the polynomial ring Qp(w)[x] onto GF (q)[x]
in the following way.

	(a=b) = 	(a)=	(b)

	(w) = �

	(x) = x

We see now that

	(Tn(x)) = 	
�
2n�1(x� �1) � � � (x� �n)

�

= 	

 
2n�1(x�

w + w�1

2
)(x�

w3 + w�3

2
) � � � (x�

w2n�1 + w�2n+1

2
)

!

= 	(2)n�1(x�
� + ��1

	(2)
)(x�

�3 + ��3

	(2)
) � � � (x�

�2n�1 + ��2n+1

	(2)
):

Since the quantities �2k�1+��2k+1

	(2)
are well de�ned in GF (q), we see that 	(Tn(x)) has

all its roots in GF (q). Hence, we can �nd n linear factors of Tn(x) modulo an odd

prime p if either one of the following circumstances occur. (i) The �eld Zp itself has a

primitive (4n)th root of unity. (ii)GF (q), a �eld with characteristic p, has a primitive

(4n)th root of unity and all the quantities �2j�1 � ��2j+1, j = 1; : : : ; n, belong to the
ground �eld Zp.

Lemma 2 Let n and K be positive integers. If p = 4nK + 1 is prime, then Zp has

a primitive (4n)th root of unity.

Proof: A well known result states that Zp has a primitive (M)th root of unity if and

only if M divides p� 1 (see, for example [10]). 2
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Lemma 3 Let n and K be positive integers. If p = 4nK � 1 is prime, then GF (p2)

has a primitive (4n)th root of unity � and all the quantities �2j�1���2j+1, j = 1; : : : ; n,

belong to the groung �eld Zp.

Proof: From the fact that 4n divides p2 � 1 follows the existence of �, a primitive

(4n)th root of unity in GF (p2). Let f(x) = x2 + ax+ b be an irreducible polynomial

in Zp[x] and let � be a root of f(x). Considering the arithmetic of GF (p2) = Zp(�),

we denote � = c + d�, for some c; d 2 Zp and compute ��1 = c�da�d�
c2�cda+d2b

: It follows

that

� + ��1 = c+
c� ad

c2 � cda+ d2b
+ �

 
d�

d

c2 � cda+ d2b

!
:

To show that �+��1 2 Zp it su�ces to show that c2�cda+d2b = 1. By the technical

lemma 4 below we observe that �p+1 = c2 � cda + d2b. As p + 1 = 4nK and � is a

primitive (4n)th root of unity, it follows that c2 � cda+ d2b = 1. From the identity

�j + ��j = (� + ��1)(�j�1 + ��(j�1))� (�j�2 + ��(j�2));

follows that all the other quantities �2j�1 + ��(2j�1) belong to Zp. 2

Lemma 4 Let p be a prime. Let � 2 GF (p2) be a root of the irreducible polynomial

f(x) = x2 + ax+ b over Zp. For any c; d 2 Zp, we have

(c+ d�)p+1 = c2 � cda+ d2b 2 Zp:

Proof: As the arithmetic is done modulo p, we have

(c+ d�)p+1 =
p+1X
j=0

 
p+ 1

j

!
cj(d�)p+1�j

= cp+1 + (p+ 1)cpd� + (p + 1)c(d�)p + (d�)p+1

= c2 + cd� + cd�p + d2�p+1:

The last equality is a consequence of Fermat's Little Theorem. Observing that �p

is the other distinct root of f(x), we see that �a = � + �p; b = �p+1 and the result
follows. 2

Theorem 6 Let n � 2 be an integer. For all the in�nitely many positive integers K

for which p = 4nK � 1 is a prime number, Tn(x) has n roots in Zp.

Proof: By the results of lemmas 2 and 3 it remains to show that there are in�nitely

many primes of the form p = 4nK+1 and p = 4nK�1. This follows from Dirichlet's

theorem2 for (l;m) = (1; 4n) and for (l;m) = (�1; 4n); respectively. 2
Example: Consider T6(x) = 32x6�48x4+18x2�1. Primes of the form p = 4nK+1,

2If l and m are integers with gcd(l;m) = 1, then there are in�nitely many prime numbers p

satisfying p � l (mod m) (see, for example, [2, pp. 122].
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include p = 73, for K = 3 and primes of the form p = 4nK � 1 include p = 23, for

K = 1. We have

T6(x) � 32 (x+ 30) (x+ 59) (x+ 16) (x+ 14) (x+ 43) (x+ 57) (mod 73) (19)

T6(x) � 9 (x+ 19) (x+ 4) (x+ 10) (x+ 9) (x+ 14) (x+ 13) (mod 23) (20)

The modular properties of the polynomials Un(x) are similar to those of the polyno-

mials Tn(x). Observing that

�k =
wk + w�k

2
; k = 1; : : : ; n;

where w = e�ki=(n+1) is a primitive complex (2n + 2)th root of unity, one can show

Theorem 7 Let n � 2 be an integer. For all the in�nitely many positive integers K

for which p = 2(n+ 1)K � 1 is a prime number, Un(x) has n roots in Zp.

6 Finding the Modular Roots

We will now outline methods to �nd the actual roots of a Chebychev polynomial in a
given �nite �elds Zp that contains all its zeros. We construct e�cient algorithms that
take an integer n > 1 and a prime p = 4nK � 1 (p = 2(n + 1)K � 1) and compute
all the zeros of Tn(x) (Un(x)) modulo p. Let us consider �rst the case p = 4nK + 1

(2(n + 1)K + 1) for some K > 0. In this case, the �eld Zp has a primitive (4n)th

((2n + 2)th ) root of unity �. It is easy to �nd � if we �rst search for a primitive

element � 2 Zp. It is well known that � satis�es gcd(p � 1; �) = 1. Since n and K

are known, we may choose � as the �rst odd prime not diving n or K (n+ 1 or K ).

Once a primitive element � is chosen, a primitive (4n)th ((2n + 2)th ) root of unity
� is obtained by setting

� = �(p�1)=4n (� = �(p�1)=(2n+2)):

The roots then are readily computed by the relation �k = �2k�1+��2k+1

2
(�k = �k���k

2

). We formalize these ideas in algorithm PRoots (Fig. 1). The number of steps
required by algorithm 1 is limited by the primes pj from the set Q that need to be

tested, which in turn is bounded by the number of primes smaller than or equal to

p. In other words, according to the Prime Number Theorem (see e. g. [2, pp. 120],
algorithm PRoots has order

O(p= log p):

As an example, consider T6(x) and p = 73 = 4 � 6 � 3 + 1. Here the �rst primitive

element of Zp is � = 5. The corresponding primitive (24)th root of unity is � =
572=24 = 53 = 52 (mod 73). The actual zeros appear in the example above. If we

take U6(x) and p = 29 = 2(6 + 1)2 + 1, the �rst primitive element of Zp is � = 3.
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Algorithm PRoots(n;K)

INPUT: Integers, n;K;Q = fp1 = 3; p2 = 5; p3 = 7; p4 = 11; : : :g

OUTPUT: Roots of Tn(x) mod 4nK + 1 [Un(x) mod 2(n+ 1)K + 1 ]

PRoots-1 p = 4nK + 1 [2(n+ 1)K + 1]

PRoots-2 (Find �)

for j = 1 to p� 1 do

2.1 � = pj
2.2 if ! (�jn or �jK) [! (� j n+ 1 or �jK)]

break

PRoots-3 � = �(p�1)=4n ( � = �(p�1)=(2n+2) )

PRoots-4 for k = 1 to n do

output �k =
�2k�1+��2k+1

2
[�k =

�k���k

2
]

Figure 1: Algorithm for computing the roots of Tn(x) ( Un(x) )

The corresponding primitive (14)th root of unity is � = 328=14 = 32 = 9 (mod 29).
The actual zeros of U6(x) (mod 29) are 11; 9; 13; 16; 20 and 18. We now consider the
case p = 4nK � 1 ( p = 2(n + 1)K � 1 ), where the extension �eld GF (p2) has a

primitive (4n)th ((2n + 2)th ) root of unity �, which we wish to �nd it. The well
known Law of Quadratic Reciprocity states: if �1 is not a square modulo p then the
polynomial x2 + 1 is irreducible in Zp. We may therefore consider GF (p2) as the
Gaussian integers, with arithmetic done modulo p. For p small, it is alright to �nd

a primitive (4n)th ((2n + 2)th) root of unity � by trial and error, obtaining �rst a
primitive element in Zp � iZp. A more e�cient search is to use the result of lemma
4. We �nd solutions c; d 2 Zp to the equation c2 + d2 = 1. Compute the order t

of the element � = c + id 2 Zp � iZp. Note t always divides p + 1, by lemma 4.

If 4n divides t ( 2n + 2 divides t ), then we take � = �t=4n ( � = �t=(2n+2)) as our

primitive (4n)th ((2n + 2)th ) root of unity. We repeat the search until 4n divides t

( 2n + 2 divides t ). Since p + 1 divides p2 � 1, we know that there exist elements
of order p + 1 in Zp � iZp and this search will terminate. This e�cient algorithm
is shown in Figure 2. Searching for modular roots in the given �eld is clearly time

consuming because the cardinality of the �nite �eld is p2. But there is no known

inexpensive algorithms to �nd a primitive element in the �eld Zp� iZp: A very rough
estimate for the running time of the algorithm MRoots is O(p3), which is in the same
order of a trial and error procedure. Clearly this worst-case running time is unlikely

and a more detailed complexity analysis of the algorithm will be worthwhile. As an

example, we take U3(x) and p = 23 = 2(3 + 1)3 � 1. Solutions (c; d) to c2 + d2 =

1 (mod p) include (4; 10); (8; 11); (9; 9); (10; 19); (11; 15). The respective orders of the

corresponding elements are 24; 12; 8; 24; 3 and we may take � = (4+10i)24=8 = 14+9i
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Algorithm MRoots(n;K)

INPUT: Integers, n;K

OUTPUT: Roots of Tn(x) mod 4nK � 1 [Un(x) mod 2(n + 1)K � 1 ]

MRoots-1 p = 4nK � 1 [2(n+ 1)K � 1]

MRoots-2 for j = 1 to p � 1 do

for k = 1 to p� 1 do

a = j2 + k2(mod p)

if a = 1 then

{ t = order(� = j + k � i mod p)

if (4n(2n + 2) j t) then goto(Step 3)

}

done
done

MRoots-3 � = �t=4n ( � = �t=(2n+2) )

MRoots-4 for k = 1 to n do output �k =
�2k�1+��2k+1

2
[ �k =

�k���k

2
]

Figure 2: Another Algorithm for Roots of Tn(x) ( Un(x) )

as the primitive (8)th root of unity. The corresponding roots are 14,0, 9.

7 Conclusion

In this paper, several algebraic properties of Chebyshev polynomials of the
�rst and second kind have been presented. In particular, criteria for determining

irreducibility and factorization of Chebyshev polynomials over the Integer Z have
been developed. Also, Tests for deciding when Chebyshev polynomials is divisible

by one another have been presented. Further, it has been shown that the remainder
produced by Euclidean division of two Chebyshev polynomials is, up to a sign, an-

other Chebyshev polynomial. In addition, this paper has discussed the problem of
factorizing Chebyshev polynomials over �nite �elds. It has been shown that, given

any Chebyshev polynomials, two in�nite sets of primes p can be found such that Zp

contains all the roots of the polynomial. A procedure for computing the modular

roots has been also presented.
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