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We consider numerical modeling of the optical properties of devices typical

of beam-steering devices based upon liquid-crystal materials: two dimen-

sional, anisotropic and inhomogeneous dielectric properties, periodic in one

dimension. A mathematical formulation of the system of second-order partial

differential equations for the components of the time-harmonic electric field

is discretized using a finite-element method based upon curl-conforming

edge elements. The discrete equations are also interpreted as equivalent

finite-difference equations. It is shown how the resulting large sparse complex

system of linear algebraic equations can be solved by an iterative method

with convergence accelerated by a preconditioner based upon fast Fourier

transforms. Benchmarking results and the application to a realistic problem

are reported. The practical limitations of the approach and its advantages and

disadvantages compared to other approaches are discussed. c© 2003 Optical

Society of America

OCIS codes: 050.1970, 160.3710, 230.3720, 260.1180, 260.2110

1. INTRODUCTION

We are interested in the development of numerical modeling tools to assist in the

design and characterization of devices based upon liquid-crystal materials, including

display devices and, in particular, beam-steering devices. Features of typical devices

include rectangular geometries, stratified components with planar interfaces, and a
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liquid-crystal film layer with anisotropic and inhomogeneous dielectric properties.

The other components that make up the device (substrates, transparent conducting

layers, polarizers, retardation layers, and the like) will vary from device to device;

however, in general they can be modeled either analytically or by computations that

are much simpler than those required to characterize behavior of the electromagnetic

fields in the film layer. While we have in mind the particular case of devices based

on liquid-crystal materials, our basic ideas and approach apply to any medium that

may have anisotropic and inhomogeneous optical properties.

Liquid-crystal devices have existed for a long time, and several methods have

been developed to model their optical properties both mathematically and numeri-

cally. Most of these approaches have been based upon approximations that treat all of

the features and properties in transverse directions as uniform, which results in math-

ematical models in terms of ordinary differential equations and systems. This includes,

for example, all of the “matrix methods” for optics (2×2, 4×4, Jones calculus, etc.).

Modern applications require numerical modeling in two and three spatial dimensions.

This is driven primarily by smaller feature sizes (and the influence of fringe fields,

for example) and by new devices that are based upon intrinsic two-dimensional or

three-dimensional structures.

There are several different approaches to modeling the optics of such devices.

Approximate techniques include quasi-one-dimensional methods (averaging in the

transverse directions one-dimensional calculations), Beam Propagation Methods,1–3

and methods based upon the Geometric Optics Approximation.4–7 Exact methods

require the solution of the Maxwell equations in some formulation. Until now this
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has been accomplished using the “Finite Difference Time Domain” approach.8–13 In

this paper, we discuss a method for solving a formulation in the frequency domain,

i.e., for the time-harmonic form of the Maxwell equations. Such techniques have been

used by numerical analysts in other settings.14 Our objectives have been to develop

effective ways to apply these techniques to our particular problems and to explore their

limitations and their advantages and disadvantages compared to other approaches and

approximations in this context.

The literature concerned with optics and electromagnetics in general (analytical

and computational aspects) is vast and is distributed among physics, engineering,

and mathematics, with different notations and terminologies sometimes used. We

have relied upon certain standard or representative references in each area: Born and

Wolff,15 Jackson16 (physics); Peterson, Ray, and Mittra17 (engineering); and Cesse-

nat,18 Nédélec19 (mathematics).

2. PROBLEM AND FORMULATION

As a prototype of a liquid-crystal beam-steering device, we consider the generic model

system depicted in Fig. 1. We assume that the device is of infinite extent in the x and

z directions with all properties 2L periodic in x and uniform in z. Figure 1 displays the

x-y section of one periodic cell. The dielectric properties of the film layer Ω (which is of

thickness d in the y direction) can be anisotropic as well as spatially varying. The front

and back components (which meet the liquid-crystal layer at interfaces Γ1 and Γ2)

will differ from device to device and will consist of typical elements such as confining

substrates, polarizers, retardation layers, and the like. We assume that they also are
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2L periodic in x and uniform in z and that their separate optical properties can be

modeled either by analytical formulas or by auxiliary numerical computations. The

exact composition of the front and back components does not matter in the approach

we take.

We assume that the properties of the materials and the intensity of the radiation

are in the linear regime, with a scalar magnetic-permeability tensor that differs by a

negligible amount from vacuum and a dielectric tensor that may be complex and not

necessarily Hermitian:

µ = µ0I, ε(r) = ε0εr(x, y), (1)

where I is the identity tensor and the relative dielectric tensor satisfies the periodicity

assumptions

εr(x + 2L, y) = εr(x, y), −∞ < x < ∞, 0 < y < d. (2)

Thus we allow for media that are absorbing or not; however, we do not admit chiral or

optically active materials in the present development. The device is illuminated from

below by a monochromatic plane-wave source of arbitrary polarization incident from

an arbitrary direction in the x-y plane. Our objective is to determine the composition

of the reflected and transmitted light.

We use a mathematical formulation for the total electric and magnetic fields

Re[exp(−iωt)E(r)] and Re[exp(−iωt)H(r)], in which the complex spatial parts or
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“amplitudes” satisfy (in the absence of current densities)

∇× E = iωµ0H, (3)

∇×H = −iωεE. (4)

By virtue of the relation ∇ · (∇ × v) = 0 (valid for any sufficiently smooth vec-

tor field v), solutions of these equations necessarily satisfy the remaining Maxwell

equations (in the absence of charge densities)

∇ ·D = ∇ ·B = 0, (5)

with the constitutive relations

D = εE, B = µ0H. (6)

A well-posed problem can be formulated for the total E field alone by eliminating

H, which gives

∇× (∇×E)− k2εr(x, y)E = 0. (7)

Here we allow for a complex wavenumber of the form

k = k0(1 + iκ), k0 = ω
√

µ0ε0, (8)

where κ ≥ 0 is a real nonnegative “attenuation coefficient,” which we introduce pri-

marily for numerical purposes to eliminate resonances, as has been done by others.20

The non-absorbing solution is obtained in general in the limit as κ → 0 according

to the “Limiting Absorption Principle.18” These solutions give the spatial parts of

the steady state solutions for the corresponding time-dependent Maxwell equations

according to the “Limiting Amplitude Principle.18”
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The incident field is assumed to be of the form

Einc(r) = exp(ik · r)Einc
0 , (9)

where k = (kx, ky, 0) = kû, with û a real propagation direction (unit vector) in x-y.

Here we must also have

k · k = k2, k ·Einc
0 = 0. (10)

The solution fields are “quasi-periodic,” E(x+2L, y) = exp(i2kxL)E(x, y), and satisfy

the “Floquet-Bloch conditions”:

ET(L, y) = exp(i2kxL)ET(−L, y), (11)

(∇×E)T(L, y) = exp(i2kxL)(∇× E)T(−L, y). (12)

Here ET denotes the tangential components of E: (Ey, Ez) along x = const (as above),

(Ex, Ez) on the front and back interfaces Γ1 and Γ2 (see Fig. 1) or along any y = const.

The electromagnetic fields satisfy the usual interface conditions: continuity of the

tangential components of E and H and the normal components of D and B across any

material interface with discontinuous dielectric properties. Thus ET and (∇×E)T (by

virtue of Eq. (3) and the constancy of µ0) are continuous everywhere. The following

radiation conditions are satisfied: E−Einc is outward propagating as y → −∞, as is

the total field E as y → ∞. For prescribed k0, d, L, εr, and Einc, the second-order

vector partial differential equation (7), the Floquet-Bloch conditions (11) and (12),

the interface conditions, and the radiation conditions are expected to give a well-

posed mathematical problem for the time-harmonic electric field E for any κ > 0 or

with κ = 0 for all but possibly a finite set of incidence directions, as is the case in

other similar settings.21–23
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3. FINITE FORMULATION

Our problem thus far is posed on an infinite domain: −L < x < L (plus quasi-periodic

conditions at x = ±L), −∞ < y <∞ (plus radiation conditions as y → ±∞). It must

somehow be reduced to a finite computational domain. We do this now by modeling

analytically the parts of the problem domain exterior to the liquid-crystal film layer

(that is, y < 0 and y > d). For this and for subsequent numerical discretization,

it is more convenient to work with a “weak formulation” of the problem, which we

describe now.

A. Weak Formulation

Integrating Eq. (7) against a sufficiently smooth test field F(x, y) and performing an

integration by parts gives

∫
Ω

{(∇× E) · (∇× F∗)− k2[εr(x, y)E] · F∗}+

∫
∂Ω

[ν̂ × (∇×E)] · F∗ = 0. (13)

Here ∂Ω denotes the boundary of Ω (the front and back interfaces Γ1 and Γ2, plus

the edges along x = ±L), ν̂ is the outward unit normal vector on the boundary, and

F∗ denotes the component-wise complex conjugate of F. Thus the boundary integrals

involve only the tangential components of ∇×E and F. If E satisfies Eq. (12) and F

satisfies the complementary Floquet-Bloch condition (with kx replaced by its complex

conjugate k∗x)

FT(L, y) = exp(i2k∗xL)FT(−L, y), (14)

then the integrals along the left-side and right-side boundary edges (x = −L and

x = L) cancel, leaving the following equation, which must be satisfied by any quasi-
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periodic solution of Eq. (7) and for all test fields F satisfying Eq. (14):

∫
Ω

{(∇×E) · (∇× F∗)− k2[εr(x, y)E] ·F∗}+

∫
Γ1+Γ2

[ν̂ × (∇× E)]T · F∗T = 0. (15)

We note that the coupling between the interior and exterior solutions is through

(∇× E)T on Γ1 and Γ2.

B. Admittance Maps

The solution outside Ω satisfies the relevant strong or weak formulation of the Maxwell

equations and couples to the interior solution via the continuity of ET and (∇ ×

E)T across Γ1 and Γ2. The structure of the front and back components will vary

from device to device. We assume that they can be characterized analytically or via

auxiliary calculations. Thus we assume that given prescribed values of the tangential

components of the total field on the interfaces, ET(·, 0) and ET(·, d), we can determine

the outer fields that correspond to those boundary values and satisfy the relevant

equations and auxiliary conditions and which are outward radiating as y → ±∞.

In terms of these outer solutions, which we denote E1(x, y) in y < 0 and E2(x, y)

in y > d, we define “admittance maps” (also known as “Calderon operators” or

“Poincaré-Steklov operators”)18,19 C1 and C2 via

C1 : ET(·, 0) 7→ [−ŷ × (∇×E1)]T(·, 0−), (16)

C2 : ET(·, d) 7→ [+ŷ × (∇×E2)]T(·, d+). (17)

The exterior problems for E1 and E2 will be well posed in general and typically

can be constructed in terms of superpositions of plane waves, which we do in the

next section for the simple example of a single glass substrate. In the absence of any
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external illumination (i.e., Einc = 0, for which the solution to the full problem would

be the zero field everywhere), we then would have

∫
Ω

{(∇×E)·(∇×F∗)−k2[εr(x, y)E]·F∗}+
∫

Γ1

C1(ET)·F∗T+

∫
Γ2

C2(ET)·F∗T = 0. (18)

In this formulation, then, the exterior regions are effectively replaced by non-local

boundary conditions on Γ1 and Γ2, as the values of C(ET) depend on ET on the entire

interface. Such boundary conditions are referred to as “exact radiation boundary con-

ditions17” or “transparent boundary conditions14” and are closely related to “Dirichlet

to Neumann maps” and techniques for exterior problems discussed in Ref. 24.

C. Equivalent Surface Current

The only source driving our solution is the incident field Einc radiating inward from

below. The total field in the exterior front can be decomposed E = E1 +E3, where E1

is the exterior solution associated with the admittance map C1 above (which satisfies

E1T = ET on Γ1 and radiates outward as y → −∞) and where E3 satisfies E3T = 0

on Γ1 and is such that E3 − Einc is outward radiating as y → −∞. Note that the

boundary condition on E3 is that of a perfect electrical conductor.

The E3 solution embodies the influence of Einc and can be used to drive the total

field in the interior through an “equivalent surface current” on the interface Γ1:

∫
Ω

{(∇× E) · (∇× F∗)− k2[εr(x, y)E] · F∗}

+

∫
Γ1

C1(ET) ·F∗T +

∫
Γ1

[ν̂ × (∇×E3)]T ·F∗T +

∫
Γ2

C2(ET) · F∗T = 0, (19)
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or

∫
Ω

{(∇×E) · (∇× F∗)− k2[εr(x, y)E] ·F∗}

+

∫
Γ1

C1(ET) · F∗T +

∫
Γ2

C2(ET) · F∗T =

∫
Γ1

g1T(x) · F∗T, (20)

with

g1(x) = ŷ × (∇× E3)(x, 0−). (21)

We can express Eq. (20) in the functional form

a(E,F) = l(F), (22)

with the forms a(·, ·) and l(·) defined by

a(E,F) =

∫
Ω

{(∇× E) · (∇× F∗)− k2[εr(x, y)E] · F∗}

+

∫
Γ1

C1(ET) · F∗T +

∫
Γ2

C2(ET) · F∗T (23)

and

l(F) =

∫
Γ1

g1T(x) · F∗T. (24)

This then is our finite formulation. The nature of the front and back components

has been abstracted into the admittance maps C1 and C2, and the influence of the in-

cident radiation has been transformed into the equivalent surface current g1. The total

field in the interior must satisfy the single Floquet-Bloch condition (11)—the second

condition, Eq. (12), is a “natural” boundary condition that is satisfied automatically

as a consequence of our variational formulation—and must satisfy Eq. (22) for all

sufficiently smooth test fields F that conform to the complementary Floquet-Bloch

condition, Eq. (14).
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4. RAYLEIGH SERIES AND ADMITTANCE MAPS

A. Rayleigh Series Expansions

In the free spaces outside of the device, or in any homogeneous isotropic strata of

the front or back components, the solution fields can be represented in terms of

“Rayleigh series18” (also known as “plane-wave expansions,” “angular spectrum rep-

resentations,” or “Floquet-harmonic expansions”):17

E(x, y) =

∞∑
n=−∞

exp[iλnx± iµn(y − y0)]En, (25)

where

λn = kx +
nπ

L
, µn =

√
k2 − λ2

n, n = −∞, . . . ,∞, (26)

and we choose the value of the square root that is either real and non-negative or has

positive imaginary part (i.e., for a complex number z in polar form, z = ρ exp(iϕ), ρ ≥

0, 0 ≤ ϕ < 2π ⇒ √
z =

√
ρ exp(iϕ/2), 0 ≤ ϕ/2 < π)—recall that kx and k2 can

be complex in general. The positive sign in the exponential in the sum in Eq. (25)

corresponds to plane waves that radiate outwards as y → ∞, while those associated

with the negative sign propagate in the opposite direction.

The expansion point y0 is arbitrary—although it must be either outside the device

or in a homogeneous, isotropic stratum—and the complex amplitudes are given by

En =
1

2L

∫ L

−L

exp(−iλnx)E(x, y0) dx. (27)

Gauss’s Law in such a medium takes the form ∇ ·E = 0 and implies the relation

λnEnx ± µnEny = 0, (28)
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which can be used to determine Eny from Enx, provided µn 6= 0. This will be the

case whenever the attenuation coefficient is positive, κ > 0 in Eq. (8), in which case

all modes are attenuated. If κ = 0, then k = k0 > 0, and we will have a finite

number of propagating modes (for which −k0 < λn < k0) and an infinite number

of non-propagating (evanescent) modes (with either λn < −k0 or λn > k0). For

a finite number of angles of incidence, it is possible to have one (or two) “surface

modes,” corresponding to λn = ±k0 and, as a consequence, µn = 0. These cases are

degenerate and admit the possibility that the full problem is not well posed (has

nontrivial solutions for Einc = 0), a so-called “resonance” phenomenon.21–23

B. Admittance Map for Glass Substrates

Expansions such as above can be used to construct analytical representations for the

admittance maps C1 and C2 of Eqs. (16) and (17), as well as for the equivalent surface

current g1 of Eq. (21), when the front and back components are sufficiently simple.

We do so now for the case in which these consist of single glass substrates. Thus we

consider a component of thickness a made up of a homogeneous, isotropic medium of

index of refraction nr > 1 relative to the exterior free space.

In Appendix A, we derive an expression for the external field E1 associated with

the Calderon operator C1 for this case. From it we can calculate the value of C1 using

Eq. (16). The operator C2 can be handled similarly and yields an identical expression.

The common form is given by

C(ET) = i

∞∑
n=−∞

exp(iλnx)

µ̃n

 αnn2
rk

2Enx

βnµ̃
2
nEnz

 , (29)
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where

αn =
(n2

rµn − µ̃n) exp(iµ̃na)− (n2
rµn + µ̃n) exp(−iµ̃na)

(n2
rµn − µ̃n) exp(iµ̃na) + (n2

rµn + µ̃n) exp(−iµ̃na)
,

(30)

βn =
(µ̃n − µn) exp(iµ̃na)− (µ̃n + µn) exp(−iµ̃na)

(µ̃n − µn) exp(iµ̃na) + (µ̃n + µn) exp(−iµ̃na)
.

Here

µ̃n =
√

n2
rk

2 − λ2
n, (31)

with the same convention as before for the value of the square root, and

EnT =
1

2L

∫ L

−L

exp(−iλnx)ET(x, 0) dx, (32)

for the front, C1(ET), and

EnT =
1

2L

∫ L

−L

exp(−iλnx)ET(x, d) dx, (33)

for the back, C2(ET).

For the special case in which the refractive indices of the free space and substrates

match identically (i.e., nr = 1 and µ̃n = µn), these operators simplify to

C(ET) = −i
∞∑

n=−∞

exp(iλnx)

µn

 k2Enx

µ2
nEnz

 . (34)

This corresponds to the simplest model problem in which the fields essentially exit the

liquid-crystal film directly to the exterior free space. Operators of such forms as these

in general are referred to as “exact radiation boundary conditions via eigenfunction

expansions.17”

In general, whenever the front and back components consist of individual elements

that are each uniform in x, then the admittance maps on pure modes will uncouple
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and will be expressible in the form

Cα

(
exp(iλnx)ET

)
= exp(iλnx)MαnET, α = 1, 2, (35)

where Mαn are 2 × 2 matrices. For example, for the case above of a single glass

substrate, we have

C
(
exp(iλnx)ET

)
= i

exp(iλnx)

µ̃n

 αnn2
rk

2Ex

βnµ̃
2
nEz



= exp(iλnx)

 iαnn2
rk

2/µ̃n 0

0 iβnµ̃n

ET, (36)

from which follows

M1n = M2n =

 iαnn2
rk

2/µ̃n 0

0 iβnµ̃n

 , (37)

or, for the special case nr = 1, µ̃n = µn,

M1n = M2n =

 −ik2/µn 0

0 −iµn

 . (38)

Anisotropic elements in the front or back components could lead to couplings between

the x and z components of the modes (Mαn
xz 6= 0 and/or Mαn

zx 6= 0 above).

It is cases such as these in general, where the admittance maps are completely

characterized by the 2 × 2 matrices {M1n, M2n}∞n=−∞, with which we can deal most

effectively by our approach. In a similar way, we can construct an analytical formula

for the equivalent surface current associated with incidence through a single glass

lower substrate, which we do next.
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C. Equivalent Surface Current for Glass Substrates

Also derived in Appendix A is the expression for the external field E3 associated

with the equivalent surface current g1 for the case of a device as above with front

components consisting only of a single glass substrate (of thickness a and index of

refraction nr). From it we can calculate the value of g1 using Eq. (21):

g1T(x) = −4i exp(ikxx)


n2

rk
2 exp(−ikya)Einc

0x

(n2
rky − k̃y) exp(ik̃ya) + (n2

rky + k̃y) exp(−ik̃ya)

kyk̃y exp(−ikya)Einc
0z

(k̃y − ky) exp(ik̃ya) + (k̃y + ky) exp(−ik̃ya)

 , (39)

where Einc is characterized in Eqs. (9) and (10), with incident wave vector (kx, ky, 0),

and k̃y = (n2
rk

2 − k2
x)

1/2 (the y component of the associated wave vector in the glass

substrate). For the special (idealized) case of a transparent substrate (nr = 1, k̃y = ky,

as before), this expression simplifies to

g1T(x) = −2i

ky
exp(ikxx)

 k2Einc
0x

k2
yE

inc
0z

 . (40)

Even in situations where the admittance maps and equivalent surface current cannot

be worked out in terms of simple analytical formulas such as Eqs. (29) and (39),

it would be expected that they could be calculated numerically without significant

difficulty.

5. NUMERICAL DISCRETIZATION

The numerical modeling of a mathematical problem such as this has two main as-

pects: discretization and solution. The first replaces the continuum model with an

approximate, discretized model containing a finite number of degrees of freedom. The
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discretized model for our problem will be a large system of complex linear algebraic

equations. The second part of the solution process consists of solving this system of

equations numerically to determine these unknowns. We discuss these distinct aspects

in this and the following section.

A. Finite-Element Discretization

The discretization of formulations of the Maxwell equations requires care. For a prob-

lem such as ours, the traditional approaches are finite differences, finite elements,

or spectral methods. Finite-difference methods are well developed in certain areas of

computational electromagnetics. They are generally applied to time-dependent formu-

lations, where the approach goes by the name of the “Finite Difference Time Domain”

(FDTD) method.25 The application of this approach in our area (high-frequency prop-

agation in inhomogeneous, anisotropic media) is relatively recent.8–13

A spectral approach in the context of a problem such as ours would take advantage

of the quasi-periodicity of the fields in the x direction and would effectively seek

approximate solutions in the form of truncated expansions of the general form

Eh(x, y) =
∑

n

exp(iλnx)En(y). (41)

Such an ansatz leads to a coupled system of ordinary differential equations (or a weak

formulation of such) for the unknown amplitude functions En(y); this system then

requires further discretization and solution. In the special case of a relative dielectric

tensor that is uniform in x (i.e., εr(x, y) = εr(y)), these equations become uncoupled—

the problem is essentially one-dimensional in that case—and we exploit this below in

Sec. 6B.
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An advantage of a spectral method is that it requires many fewer degrees of free-

dom for the x dependence than the finite-difference and finite-element discretizations,

which require a sufficiently large number of grid points or mesh cells per wavelength to

resolve the fields accurately. A disadvantage of such an approach is that the resulting

discretization matrix, though smaller, is less “sparse,” that is, it contains relatively

more non-zero elements and thus requires more computer memory to store and more

work to solve in general (than a sparser linear system of comparable size).

The numerical modeling on which we report here utilizes a finite-element dis-

cretization (which we shall also interpret as equivalent finite-difference equations).

In recent years, the numerical analysis community has devoted much attention to

finite-element methods for such problems (see Ref. 26 for a recent review). There are

subtleties that render standard element functions inappropriate for our formulation,

and specialized elements must be used instead. The elements we use are referred to

by various names: “Nédélec elements,” “curl-conforming elements,” “edge elements,”

“discrete Whitney forms.” We have used the lowest-order such element for rectangular

mesh cells: “constant tangential/linear normal” (CT/LN).17,26

We use a rectangular mesh on the computational domain Ω = (−L, L) × (0, d)

consisting of uniform cells in x and in y:

xi = i∆x, i = −I, . . . , I, ∆x =
L

I
,

(42)

yj = j∆y, j = 0, . . . , J, ∆y =
d

J
.

An individual mesh cell, (xi, xi+1)×(yj , yj+1), and associated local degrees of freedom

are shown in Fig. 2. The approximate solution is represented locally in terms of the
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degrees of freedom indicated there by the following formulas:

Eh
x(x, y) = Ex

i+ 1
2
,j

yj+1 − y

∆y
+ Ex

i+ 1
2
,j+1

y − yj

∆y
,

Eh
y (x, y) = Ey

i,j+ 1
2

xi+1 − x

∆x
+ Ey

i+1,j+ 1
2

x− xi

∆x
,

(43)

Eh
z (x, y) = Ez

i,j

xi+1 − x

∆x

yj+1 − y

∆y
+ Ez

i+1,j

x− xi

∆x

yj+1 − y

∆y

+ Ez
i,j+1

xi+1 − x

∆x

y − yj

∆y
+ Ez

i+1,j+1

x− xi

∆x

y − yj

∆y
.

Thus locally the Ex components are constant in x and linear in y, the Ey components

are linear in x and constant in y, and the Ez components are bilinear in (x, y).

The global approximate vector fields are pieced together from these. The continu-

ity properties of the components of Eh are consistent with the interface conditions that

would correspond to the treatment of the dielectric tensor as piecewise constant (i.e.,

as a piecewise homogeneous but anisotropic medium): tangential components are con-

tinuous across horizontal and vertical mesh-cell interfaces, while normal components

may have jumps. Even though Ex and Ey are not necessarily globally continuous,

the resulting vector field does have finite energy (square-integrable curl). The global

degrees of freedom then are, for i = −I, . . . , I − 1,

Ex
i+ 1

2
,j
, j = 0, . . . , J,

Ey

i,j+ 1
2

, j = 0, . . . , J − 1,

Ez
i,j , j = 0, . . . , J,

(44)

with Ey
I,∗ and Ez

I,∗ determined by the Floquet-Bloch conditions (11):

Ey

I,j+ 1
2

= exp(i2kxL)Ey

−I,j+ 1
2

, j = 0, . . . , J − 1,

(45)

Ez
I,j = exp(i2kxL)Ez

−I,j , j = 0, . . . , J.
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These are depicted in Fig. 3.

The test fields F are approximated locally by the same formulas, Eqs. (43), and

their values along the right boundary x = L (i = I) are determined in a similar way

by the complementary Floquet-Bloch conditions (14). The computational problem

that we must solve is obtained by substituting the local approximations for E and F

into the weak formulation of the problem, Eq. (22), utilizing appropriate numerical

quadrature for the integrals that cannot be computed exactly, and discretizing the

admittance maps C1 and C2 in some appropriate way. We discuss these issues below.

What results is a large sparse complex linear-algebraic system of equations

Ae = b, (46)

where the vector e contains the global degrees of freedom in some order. The total

number of unknowns is 2I(3J + 2).

B. Equivalent Finite-Difference Equations

It is possible to interpret the discrete model as a system of finite-difference equa-

tions, and we do that now. We consider a slightly more general problem, with addi-

tional current sources, which will be needed in Sec. 6B below. Thus we augment the

conjugate-linear form in Eq. (24)

l(F) =

∫
Γ1

g1T(x) · F∗T +

∫
Γ2

g2T(x) · F∗T +

∫
Ω

G(x, y) · F∗. (47)

The strong form of the associated system of partial differential equations can be

written

∇× (∇×E)− k2D = G(x, y), in Ω, (48)
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where we now use D = εr(x, y)E as a convenient notation, or in component form, for

−L < x < L, 0 < y < d,

∂y(∂xEy − ∂yEx)− k2Dx = Gx(x, y),

−∂x(∂xEy − ∂yEx)− k2Dy = Gy(x, y), (49)

−∂2
xEz − ∂2

yEz − k2Dz = Gz(x, y),

with non-local boundary conditions

[ŷ × (∇× E)]T + C1(ET) = g1T(x), on Γ1,

(50)

−[ŷ × (∇× E)]T + C2(ET) = g2T(x), on Γ2,

or

(∂xEy − ∂yEx)(x, 0) + C1x(x) = g1x(x),

(51)

−∂yEz(x, 0) + C1z(x) = g1z(x),

on y = 0, and

−(∂xEy − ∂yEx)(x, d) + C2x(x) = g2x(x),

(52)

∂yEz(x, d) + C2z(x) = g2z(x),

on y = d, all valid for −L < x < L. In addition, the E field must still satisfy the

quasi-periodicity conditions (11) and (12).

In our present implementation, for the numerical approximation of the integrals

in Eqs. (23) and (24), we have approximated the relative dielectric tensor piecewise

uniformly,

εr(x, y) ≈ εr(xi+ 1
2
, yj+ 1

2
), xi < x < xi+1, yj < y < yj+1, (53)
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and have employed a nodal quadrature rule,∫ yj+1

yj

∫ xi+1

xi

f(x, y) dx dy ≈ ∆x∆y

4
(fi,j + fi+1,j + fi,j+1 + fi+1,j+1) , (54)

for the element area integrals and a composite trapezoidal rule for the boundary

integrals. We utilize standard notation for centered finite-difference operators:

δxui =
ui+ 1

2
− ui− 1

2

∆x
, δ2

xui = δx(δxui) =
ui+1 − 2ui + ui−1

∆x2
. (55)

Our discretized equations can be written in the following form. For i = −I, . . . , I−1,

δy(δxE
y

i+ 1
2
,j
− δyE

x
i+ 1

2
,j
)− k2D

x

i+ 1
2
,j = Gx

i+ 1
2
,j
, j = 1, . . . , J − 1, (56a)

−δx(δxE
y

i,j+ 1
2

− δyE
x
i,j+ 1

2
)− k2D

y

i,j+ 1
2

= Gy

i,j+ 1
2

, j = 0, . . . , J − 1, (56b)

−δ2
xE

z
i,j − δ2

yE
z
i,j − k2D

z

i,j = Gz
i,j, j = 1, . . . , J − 1, (56c)

where the components of D are approximated by the averages

D
x

i+ 1
2
,j =

εxx
i+ 1

2
,j− 1

2

+ εxx
i+ 1

2
,j+ 1

2

2
Ex

i+ 1
2
,j

+
1

2

[
εxy

i+ 1
2
,j− 1

2

Ey

i,j− 1
2

+ Ey

i+1,j− 1
2

2

+ εxy

i+ 1
2
,j+ 1

2

Ey

i,j+ 1
2

+ Ey

i+1,j+ 1
2

2

]
+

εxz
i+ 1

2
,j− 1

2

+ εxz
i+ 1

2
,j+ 1

2

2

Ez
i,j + Ez

i+1,j

2
,

D
y

i,j+ 1
2

=
1

2

[
εyx

i− 1
2
,j+ 1

2

Ex
i− 1

2
,j

+ Ex
i− 1

2
,j+1

2
+ εyx

i+ 1
2
,j+ 1

2

Ex
i+ 1

2
,j

+ Ex
i+ 1

2
,j+1

2

]

+
εyy

i− 1
2
,j+ 1

2

+ εyy

i+ 1
2
,j+ 1

2

2
Ey

i,j+ 1
2

+
εyz

i− 1
2
,j+ 1

2

+ εyz

i+ 1
2
,j+ 1

2

2

Ez
i,j + Ez

i,j+1

2
, (57)

D
z

i,j =
1

2

[
εzx
i− 1

2
,j− 1

2

+ εzx
i− 1

2
,j+ 1

2

2
Ex

i− 1
2
,j

+
εzx
i+ 1

2
,j− 1

2

+ εzx
i+ 1

2
,j+ 1

2

2
Ex

i+ 1
2
,j

]

+
1

2

[
εzy

i− 1
2
,j− 1

2

+ εzy

i+ 1
2
,j− 1

2

2
Ey

i,j− 1
2

+
εzy

i− 1
2
,j+ 1

2

+ εzy

i+ 1
2
,j+ 1

2

2
Ey

i,j+ 1
2

]

+
εzz
i− 1

2
,j− 1

2

+ εzz
i+ 1

2
,j− 1

2

+ εzz
i− 1

2
,j+ 1

2

+ εzz
i+ 1

2
,j+ 1

2

4
Ez

i,j.
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The difference equations (56) bear a clear formal relationship to the partial differ-

ential equations (49) and give second-order accurate approximations to them in the

sense that the truncation error (consistency error) is formally O(∆x2 + ∆y2), which

is in fact the rate of convergence we observe. Other types of quadrature rules and

ways of approximating the dielectric tensor could produce different formulas for the

averages in Eqs. (57). The piecewise-uniform approximation to εr(x, y), Eq. (53), is

useful if there are internal interfaces in the film layer Ω, such as electrode strips, for

example.

The first and last finite-difference equations for the x and z components contain

contributions from the surface integrals:

(
δxE

y

i+ 1
2
, 1
2

− δyE
x
i+ 1

2
, 1
2

)
+ C1x

i+ 1
2

= g1x
i+ 1

2
+

∆y

2

(
k2D

x

i+ 1
2
,0 + Gx

i+ 1
2
,0

)
,

(58)

−δyE
z
i, 1

2
+ C1z

i = g1z
i +

∆y

2

(
δ2
xE

z
i,0 + k2D

z

i,0 + Gz
i,0

)
,

for j = 0, and

−
(
δxE

y

i+ 1
2
,J− 1

2

− δyE
x
i+ 1

2
,J− 1

2

)
+ C2x

i+ 1
2

= g2x
i+ 1

2
+

∆y

2

(
k2D

x

i+ 1
2
,J + Gx

i+ 1
2
,J

)
,

(59)

δyE
z
i,J− 1

2
+ C2z

i = g2z
i +

∆y

2

(
δ2
xE

z
i,J + k2D

z

i,J + Gz
i,J

)
,

for j = J . These give second-order accurate approximations to the non-local boundary

conditions (51) and (52) and can be constructed in an alternate way by directly

applying the method of “fictitious points” to Eqs. (51) and (52), that is, by introducing

auxiliary grid points outside the domain, approximating the boundary conditions by

symmetric finite-difference formulas involving these “fictitious points,” and then using

the difference equations for the x and z components from Eqs. (56) evaluated on the
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boundaries (i.e., Eqs. (56a) and (56c), for j = 0 and j = J) to eliminate the fictitious

degrees of freedom. See for example Sec. 2.13 of Ref. 27. The averages for D must be

appropriately modified for these boundary grid cells:

D
x

i+ 1
2
,0 = εxx

i+ 1
2
, 1
2
Ex

i+ 1
2
,0

+ εxy

i+ 1
2
, 1
2

Ey

i, 1
2

+ Ey

i+1, 1
2

2
+ εxz

i+ 1
2
, 1
2

Ez
i,0 + Ez

i+1,0

2
,

D
z

i,0 =
1

2

[
εzx
i− 1

2
, 1
2
Ex

i− 1
2
,0

+ εzx
i+ 1

2
, 1
2
Ex

i+ 1
2
,0

]
(60)

+
εzy

i− 1
2
, 1
2

+ εzy

i+ 1
2
, 1
2

2
Ey

i, 1
2

+
εzz
i− 1

2
, 1
2

+ εzz
i+ 1

2
, 1
2

2
Ez

i,0,

for j = 0, and

D
x

i+ 1
2
,J = εxx

i+ 1
2
,J− 1

2
Ex

i+ 1
2
,J

+ εxy

i+ 1
2
,J− 1

2

Ey

i,J− 1
2

+ Ey

i+1,J− 1
2

2
+ εxz

i+ 1
2
,J− 1

2

Ez
i,J + Ez

i+1,J

2
,

D
z

i,J =
1

2

[
εzx
i− 1

2
,J− 1

2
Ex

i− 1
2
,J

+ εzx
i+ 1

2
,J− 1

2
Ex

i+ 1
2
,J

]
(61)

+
εzy

i− 1
2
,J− 1

2

+ εzy

i+ 1
2
,J− 1

2

2
Ey

i,J− 1
2

+
εzz
i− 1

2
,J− 1

2

+ εzz
i+ 1

2
,J− 1

2

2
Ez

i,J ,

for j = J .

As we can see, once an appropriate definition and staggering is given for the dis-

crete unknowns—in this case, identical to the spatial part of the familiar Yee scheme

utilized in time-domain calculations28—one can easily derive natural, symmetric, cen-

tered difference schemes directly from the partial differential equations and boundary

conditions. Both of the equivalent points of view (finite elements and finite differences)

are useful. We have relied upon the finite-element formulation for the coding and im-

plementation of the assembly of the A matrix and b vector, while we have found the

equivalent finite-difference equations more convenient for developing the numerical

preconditioners, which accelerate the convergence of the iterative numerical solution

algorithms and which we discuss in Sec. 6B.
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C. Discrete Floquet Transforms and Discrete Admittance Maps

Under discretization, one deals with grid functions, which have finite Rayleigh series

expansions determined by interpolation conditions (or discrete orthogonality condi-

tions) rather than by integral formulas. The global degrees of freedom (44) can be

expanded in terms of these, for l = −I, . . . , I − 1,

Ex
l+ 1

2
,m

=

I−1∑
n=−I

Êx
n,m exp(iλnxl+ 1

2
), m = 0, . . . , J,

Ey

l,m+ 1
2

=

I−1∑
n=−I

Êy

n,m+ 1
2

exp(iλnxl), m = 0, . . . , J − 1, (62)

Ez
l,m =

I−1∑
n=−I

Êz
n,m exp(iλnxl), m = 0, . . . , J,

where the discrete modal amplitudes are given by, for n = −I, . . . , I − 1,

Êx
n,m =

1

2I

I−1∑
l=−I

Ex
l+ 1

2
,m

exp(−iλnxl+ 1
2
), m = 0, . . . , J,

Êy

n,m+ 1
2

=
1

2I

I−1∑
l=−I

Ey

l,m+ 1
2

exp(−iλnxl), m = 0, . . . , J − 1, (63)

Êz
n,m =

1

2I

I−1∑
l=−I

Ez
l,m exp(−iλnxl), m = 0, . . . , J.

These are sometimes referred to as the “discrete Floquet inverse transform” and

“discrete Floquet transform” respectively. Since λn = kx + nπ/L, these differ only

by pre-/post-scaling factors from the ordinary discrete Fourier inverse transform and

transform and can thus be evaluated in O(I log I) work via fast Fourier transforms.

The discrete Floquet transforms can be used to construct discretizations of the

admittance maps C1 and C2 in the cases where the front and back components are uni-

form in x, in which case C1 and C2 are completely characterized by the family of 2×2

matrices {M1n, M2n} of Eq. (35). The discrete operators then will take as input the
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degrees of freedom on the interfaces, {Ex
i+ 1

2
,0
, Ez

i,0}I−1
i=−I on Γ1 and {Ex

i+ 1
2
,J

, Ez
i,J}I−1

i=−I

on Γ2 respectively, transform them using discrete Floquet transforms, apply M1n and

M2n to the finite number of modal amplitudes (n = −I, . . . , I − 1), and transform

back with inverse discrete Floquet transforms. This is a natural approach and exhibits

2nd-order pointwise accuracy at the nodes and edge centers. It differs a little from

the approach of Ref. 14, which views the finite-element solution Eh from a continuum

perspective and uses instead truncation of the infinite, continuous Rayleigh series

expansions.

If some element of the front or back components fails to be uniform in x, then

the outer problems for the E1, E2, and E3 fields do not all uncouple under the

modal transforms, and the admittance maps cannot be characterized so simply. In

such cases, our basic approach remains valid, however we will not be able to utilize

the preconditioners discussed in the next section. Sometimes this difficulty can be

overcome by including the offending parts of the front or back components in the

definition of the domain Ω (which is treated as being completely inhomogeneous).

The discretized admittance maps are ultimately linear transformations on the grid

functions {Ex
i+ 1

2
,0
, Ez

i,0}I−1
i=−I and {Ex

i+ 1
2
,J

, Ez
i,J}I−1

i=−I to {C1x
i+ 1

2

, C1z
i }I−1

i=−I and {C2x
i+ 1

2

, C2z
i }I−1

i=−I

respectively. They can be represented in various ways, and we deal with them flexibly

in our codes. Possible representations include (1) 4I × 4I matrices (which represent

the linear transformations via matrix-vector multiplication, with respect to some or-

dering of the grid values), (2) procedures or subroutines (which take as inputs the

grid values of the discrete E field on Γ1 and Γ2 and return as outputs the grid values

of the discretized C1 and C2), and (3) the collection of 2×2 matrices {M1n, M2n}I−1
n=−I
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(which represent the action of the operators on modal components, in the transform

domain). The matrices of (1) are needed for the direct solution algorithms discussed

below, while either (1) or (2) or (3) can be used for the basic iterative numerical solu-

tion procedures. Knowledge of representation (3) is required for the preconditioners,

which rely on fast discrete Floquet transforms for speed of execution.

6. NUMERICAL SOLUTION

A. Discretization Matrix Structure and Solution Methods

The discretization matrix A of our system (46) is large, sparse, and complex, but

it is not Hermitian. If kx is complex (non-zero attenuation factor, κ > 0), then the

Hermitian symmetry is destroyed by the Floquet-Bloch conditions (11) and (14). If k

is real (no attenuation factor) and εr real symmetric (lossless, non-absorbing medium),

then the contributions to A from the first terms of the a(·, ·) form, from Eq. (23),∫
Ω

{(∇× E) · (∇× F∗)− k2[εr(x, y)E] · F∗}, (64)

will be Hermitian symmetric; however, the contributions from the admittance maps

(boundary integrals) fail to be self-adjoint in general. For this one would require

C† = C, where the adjoint linear operator is defined by∫
Γ

C(ET) · F∗T =

∫
Γ

ET ·C†(FT)∗, (65)

to be valid for all admissible fields E and F. For the idealized case of fields exiting

the region Ω directly to an exterior free space, for example, we have from Eq. (34)

C(ET) = −i
∞∑

n=−∞

exp(iλnx)

µn

 k2Enx

µ2
nEnz

 , (66)
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from which follows

C†(FT) = i

∞∑
n=−∞

exp(iλ∗nx)

µ∗n

 (k∗)2Fnx

(µ∗n)2Fnz

 . (67)

Even with k2 and kx real, in which case the evanescent-mode parts of C and C† (λn

real, µn purely imaginary) agree, the propagating-mode parts (λn and µn real) differ

by a factor of −1.

The linear system (46) can be solved by either direct or iterative methods. Direct

solution requires assembling A and b, storing A in some sparse matrix format, and

solving via a sparse, complex LU factorization and back solution. This is acceptable

for problems in two spatial dimensions, such as ours, but would not be expected

to be competitive for three-dimensional problems, to which we aspire. An alternate

approach, essential in higher dimensions, would be to use an iterative algorithm, and

we have implemented this as well in our code development.

Several possibilities exist for the iterative solution of systems such as ours, in-

cluding GMRES (for which solid convergence analysis results are well established)

and Orthomin (which has been utilized by Bao and Dobson14 for diffractive optics

calculations in other contexts). For our first implementation, the results from which

are reported below, we have chosen to use Bi-CGSTAB, primarily because of its sim-

plicity. This algorithm requires only the implementation of a matrix-vector product

(x 7→ Ax) and (optionally) a “preconditioner” for A (see below). It does not require

either of those functionalities for the Hermitian transpose A†, nor does it require any

history vectors (and their associated extra storage). While it does not have as solid

a convergence analysis as some of these other methods, it has performed acceptably
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for our application. The actual algorithm is typical of such “Krylov Subspace Meth-

ods:” it is short, simple, and built upon matrix-vector multiplications, vector dot

products, and short vector recurrences. Discussions of such methods can be found in

Refs. 29–31.

Without an effective preconditioner, convergence of the Bi-CGSTAB iteration

for our problem is unacceptably slow—see comparisons below. We are fortunate that

there are very good preconditioners that can be implemented for our system. In

general, preconditioning accelerates the convergence of iterative algorithms such as

ours by effectively solving an equivalent problem of the form

M−1Ae = M−1b. (68)

Here the matrix M is the preconditioner, and the objective is to produce an equiv-

alent problem for which the iterative algorithm converges much more rapidly. This

can be accomplished if the preconditioned coefficient matrix is close to the identity

matrix, M−1A ≈ I, or a scaling of it. The goal then is to construct an easily in-

vertible preconditioner that achieves this. In physical applications, this is frequently

done by constructing solution operators for discretizations of similar (but simpler)

approximate problems, and we do this here next.
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B. Preconditioning

For the purposes of constructing a preconditioner, it is necessary to consider a problem

of the form

∇× (∇× E)− k2εr(x, y)E = G(x, y), in Ω,

[ŷ × (∇× E)]T + C1(ET) = 0, on Γ1, (69)

−[ŷ × (∇× E)]T + C2(ET) = 0, on Γ2,

with a given current density G and subject to the same Floquet-Bloch conditions

(11) and (12). In a preconditioning step, G will be related to the residual associated

with the approximate solution vector at that stage of the iteration, and E will be

related to the error (correction) between the current approximate solution and the

true solution of the discrete problem. If the relative dielectric tensor were uniform in

x, then our discretization of such a problem could be solved very efficiently using fast

transforms—assuming that the external components of the device were all uniform

in x as well.

We are thus led to consider approximate, preconditioning problems for which the

dielectric tensor has been approximated by one that is uniform in x:

εr(x, y) ≈ εp(y). (70)

Two possibilities suggest themselves: a homogeneous, isotropic medium,

εp(y) = n2
pI, 0 < y < d, (71)

where np is some (constant) effective index of refraction for the liquid-crystal layer,

30



or

εp(y) =
1

2L

∫ L

−L

εr(x, y) dx, 0 < y < d, (72)

in which the true relative dielectric tensor has been averaged in the lateral direction.

In implementation, Eq. (71) is cleaner and faster per step, whereas Eq. (72) has

more fidelity to the original problem but requires more work per step. We discuss the

implementation of Eq. (71) but will report benchmarking results (in the next section)

for Eq. (72).

From Eqs. (56), (58), and (59), we can obtain the finite-difference equations

for the preconditioning problem under the assumption (71). They are given by, for

l = −I, . . . , I − 1,

2

∆y

(
δxE

y

l+ 1
2
, 1
2

− δyE
x
l+ 1

2
, 1
2

)
− k2n2

pE
x
l+ 1

2
,0

+
2

∆y
C1x

l+ 1
2

= Gx
l+ 1

2
,0
,

δy

(
δxE

y

l+ 1
2
,m
− δyE

x
l+ 1

2
,m

)
− k2n2

pE
x
l+ 1

2
,m

= Gx
l+ 1

2
,m

, m = 1, . . . , J − 1, (73)

− 2

∆y

(
δxE

y

l+ 1
2
,J− 1

2

− δyE
x
l+ 1

2
,J− 1

2

)
− k2n2

pE
x
l+ 1

2
,J

+
2

∆y
C2x

l+ 1
2

= Gx
l+ 1

2
,J

,

−δx

(
δxE

y

l,m+ 1
2

− δyE
x
l,m+ 1

2

)
− k2n2

pE
y

l,m+ 1
2

= Gy

l,m+ 1
2

, m = 0, . . . , J − 1, (74)

−δ2
xE

z
l,0 −

2

∆y
δyE

z
l, 1

2
− k2n2

pE
z
l,0 +

2

∆y
C1z

l = Gz
l,0,

−δ2
xE

z
l,m − δ2

yE
z
l,m − k2n2

pE
z
l,m = Gz

l,m, m = 1, . . . , J − 1, (75)

−δ2
xE

z
l,J +

2

∆y
δyE

z
l,J− 1

2
− k2n2

pE
z
l,J +

2

∆y
C2z

l = Gz
l,J ,

We solve by computing the discrete Floquet transforms of the right-hand-side cur-

rent densities (residuals) using Eqs. (63), and seek solutions in terms of the modal
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expansions (62). We make use of the formula

δx exp(iλx) =
exp

(
iλ

(
x + ∆x

2

))− exp
(
iλ

(
x− ∆x

2

))
∆x

=
2i

∆x
sin

(
λ

∆x

2

)
exp(iλx).

(76)

We also make use of the relationsĈ1x
n

Ĉ1z
n

 =

M1n
xx M1n

xz

M1n
zx M1n

zz


Êx

n,0

Êz
n,0

 ,

Ĉ2x
n

Ĉ2z
n

 =

M2n
xx M2n

xz

M2n
zx M2n

zz


Êx

n,J

Êz
n,J

 , (77)

with the 2× 2 matrices {M1n, M2n} as given in Eq. (35).

We obtain the following system of uncoupled equations for the modal amplitudes:

for n = −I, . . . , I − 1,

2

∆y

[
2i

∆x
sin

(
λn

∆x

2

)
Êy

n, 1
2

− δyÊ
x
n, 1

2

]
− k2n2

pÊ
x
n,0

+
2

∆y

(
M1n

xx Êx
n,0 + M1n

xz Êz
n,0

)
= Ĝx

n,0,

2i

∆x
sin

(
λn

∆x

2

)
δyÊ

y
n,m − δ2

yÊ
x
n,m − k2n2

pÊ
x
n,m = Ĝx

n,m, m = 1, . . . , J − 1, (78)

− 2

∆y

[
2i

∆x
sin

(
λn

∆x

2

)
Êy

n,J− 1
2

− δyÊ
x
n,J− 1

2

]
− k2n2

pÊ
x
n,J

+
2

∆y

(
M2n

xx Êx
n,J + M2n

xz Êz
n,J

)
= Ĝx

n,J ,

4

∆x2
sin2

(
λn

∆x

2

)
Êy

n,m+ 1
2

+
2i

∆x
sin

(
λn

∆x

2

)
δyÊ

x
n,m+ 1

2

− k2n2
pÊ

y

n,m+ 1
2

= Ĝy

n,m+ 1
2

, m = 0, . . . , J − 1, (79)
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4

∆x2
sin2

(
λn

∆x

2

)
Êz

n,0 −
2

∆y
δyÊ

z
n, 1

2
− k2n2

pÊ
z
n,0

+
2

∆y

(
M1n

zx Êx
n,0 + M1n

zz Êz
n,0

)
= Gz

n,0,

4

∆x2
sin2

(
λn

∆x

2

)
Êz

n,m − δ2
yÊ

z
n,m − k2n2

pÊ
z
n,m = Ĝz

n,m, m = 1, . . . , J − 1, (80)

4

∆x2
sin2

(
λn

∆x

2

)
Êz

n,J +
2

∆y
δyÊ

z
n,J− 1

2
− k2n2

pÊ
z
n,J

+
2

∆y

(
M2n

zx Êx
n,J + M2n

zz Êz
n,J

)
= Ĝz

n,J .

The resulting linear algebraic system of equations has 3J + 2 unknowns (for each n),

and with the equations and unknowns properly ordered, it has a banded coefficient

matrix with seven diagonals (three below and three above the main diagonal). It

can be solved in O(J) work by direct elimination. Thus the values for all the modal

amplitudes, for n = −I, . . . , I − 1, can be computed in O(IJ) work.

The preconditioning problem must be solved twice at each iteration of the Bi-

CGSTAB solver. The vector to which the preconditioner solution matrix M−1 must

be applied is related to the “residual” vector associated with the approximate solution

vector at the current stage of the iteration, i.e., to the defect or amount by which that

vector fails to solve the true problem: rc = b−Aec. The entire solution of the discrete

preconditioning problem proceeds in three stages: (1) performing discrete Floquet

transforms with respect to x on the current residual vector to determine Ĝx
n,m, Ĝz

n,m,

m = 0, . . . , J , and Ĝy

n,m+ 1
2

, m = 0, . . . , J − 1; (2) forming and solving the decoupled

banded linear systems for Êx
n,m, Êy

n,m+ 1
2

, and Êz
n,m for each n = −I, . . . , I − 1; and

(3) performing inverse discrete Floquet transforms of those solutions to reconstruct

the components of the new vector, Ex
l+ 1

2
,m

, Ey

l,m+ 1
2

, and Ez
l,m. The total amount of
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work is O(IJ log I), for a problem with O(IJ) unknowns. In a typical problem, each

preconditioned iteration improves the accuracy by roughly one decimal digit, and so

the iterative solver only needs to execute on the order of 4–6 iterations. We describe

some of these benchmarking aspects in the next section.

This type of preconditioning, via so-called “fast direct solvers,” is common and

is effective in situations such as ours. Variants of it have been used in other contexts

involving diffractive optics calculations.14 Our approach differs slightly from Ref. 14

in that we use fast transforms to solve directly the discrete preconditioning problem,

Eqs. (73), (74), and (75), instead of formulating a continuous preconditioning problem

in the transform domain and then discretizing it in some way that is compatible with

the overall discretization of the original problem. We found the latter approach prone

to ill conditioning of the uncoupled linear systems for the modal amplitudes associated

with the high frequencies.

The action of the preconditioning matrix M−1 is essentially equivalent to that of

a discrete Green’s function, and in principle the same effect could be achieved by using

a Green’s function to convert the original problem to an equivalent integral equation

formulation, discretizing, and solving the resulting (well conditioned) linear-algebraic

system of equations by an unpreconditioned iterative algorithm with the matrix-

vector multiplications realized by fast transforms. We have found our approach more

convenient from an implementation point of view, as it allows for a flexible handling

of the components of the device external to the film layer, which can be characterized

independently and provided as a “user input.” The approach also allows one to deal

with preconditioning problems for which the effective/approximate relative dielectric
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tensor εp(y) has a bona-fide y dependence, while for such problems in general it

would not be possible to write down an analytical expression for the needed Green’s

functions.

The fast solution of our preconditioning problem relies on the decoupling of the

problems for the individual modes, and this is lost if any external component (front

or back) fails to be uniform in x. Any parts not uniform in x need to be encompassed

in the computational domain Ω.

7. BENCHMARKING

Some tests were performed to gauge the accuracy and efficiency of the numerical

approach. For this purpose, it is sufficient to use a simple model problem, with a

known analytical solution. Thus we consider a film layer consisting of a slab of glass

(homogeneous, isotropic) of index of refraction nr = 1.5 embedded in an exterior

free space (i.e., no front or back components). The dimensions of Ω are chosen to be

d = L = 2λ0/3, where λ0 is the free-space wavelength of the incident light, so that

both d and L are equal to one wavelength of the light in the medium. The problem

was discretized as described in Sec. 5.

Analytical solutions can be constructed easily, and so pointwise errors (at the

nodes, for Ez, and at the horizontal and vertical edge centers, for Ex and Ey) can be

computed. Representative results are presented in Table 1. The numerical data give

clear indication of O(h2) accuracy: as the cell size h = ∆x = ∆y is reduced by 1
2
, the

maximum error is reduced by 1
4
. These and other tests lead to the rule of thumb that

to obtain 5% pointwise error requires roughly 16 grid points per wavelength of light
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in the medium, while to obtain 1% error, it is necessary to use about 32 grid points

per wavelength.

We note that the published theoretical convergence analyses for discretizations

of problems such as ours are of the typical finite-element nature: O(h) errors with

respect to energy norms, in H(curl; Ω), and O(h2) with respect to mean-square errors,

L2(Ω).32 Some results in the direction of nodal convergence are indicated in Ref. 33,

but with respect to somewhat different discrete norms. We are not aware of any rigor-

ous analysis proving the second-order pointwise convergence that is clearly observed

with our code using this established discretization method.

The complex linear algebraic system of equations was solved as described in

Sec. 6, using the Bi-CGSTAB iterative algorithm, with or without preconditioning.

The implementation was coded in Fortran 90 and tested on an older workstation

with a 240 MHz PA-RISC processor, on which floating-point arithmetic is roughly

comparable to that of a 500 MHz Pentium PC. The iterations were started from a

zero initial guess and stopped at a maximum absolute error of 10−4. Table 2 contains

results for a representative problem.

The big improvement afforded by the preconditioner is clear, as are the scaling

laws that govern work versus problem size. For the un-preconditioned calculations,

when I and J are doubled (and the total number of unknowns quadrupled), the num-

ber of iterations increases by a factor of four, as does the problem size (and work per

iteration), leading to an increase in total work and time by a factor of sixteen. This

would be unacceptable even on a faster, more modern machine. The observed per-

formance for the preconditioned calculations is consistent with the previously stated
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work estimate of O(IJ log I): as I and J are doubled, the total work and time increase

by a factor slightly greater than four.

The main storage requirements for the code come from the matrix A, stored in

some sparse matrix format, the vector e, which contains the current approximate

solution, and a few auxiliary vectors of the same size that are required by the itera-

tive algorithm, the total of which is proportional to the product IJ . Thus the largest

problem that can be dealt with on a given platform by this approach is limited by

the area of the computational domain Ω ( = 2dL) and the wavelength of the light

in the medium (since a certain number of grid points per wavelength are required to

meet the desired accuracy needs). On a computer with 512 MB RAM, for a typical

problem (light in the middle of the visible range, refractive indices of the order of

1.5), the maximum tractable domain size is roughly 100 µm2 and takes on the or-

der of 30 minutes to solve on our (older) workstation—the current class of personal

computers can solve such a problem much faster.

8. APPLICATION

For the purposes of evaluation, we have used our techniques to analyze the reflection

and transmission properties of an idealized IPS-mode (“In Plane Switching”) liquid-

crystal cell.34,35 Such devices were originally introduced (with a different anchoring

orientation) in Ref. 36. The primary advantage of the IPS mode is its improved optical

performance at wide viewing angles. In particular, the IPS mode improves upon the

poor grayscale performance that plagues the more conventional twisted-nematic mode

used in most high-resolution liquid crystal display devices. A typical director field for
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such a cell, in the “on state,” is depicted in Fig. 4; in the off state, the directors would

all be aligned uniformly in the vertical direction. This particular film is 5 µm thick

and has a periodicity of 8 µm; these correspond to the actual dimensions of physical

cells that were fabricated and experimentally characterized by Liu and Kelly37 (see

also Ref. 38).

The cell is illuminated from below by a normally incident monochromatic plane

wave with a vacuum wavelength of 550 nm. The source is linearly polarized in the

x̂ direction, and the ordinary and extra-ordinary refractive indices are taken to be

no = 1.5 and ne = 1.6. Results are included for two cases: no front/back external

components vs idealized crossed polarizers (±45◦). In order to compare with other

numerical results, the influence of the confining glass substrates has been ignored—

one would anticipate an error of the order of 5% as a consequence.

The wavelength of the light in the medium is around 350 nm; so the dimensions

of the computational domain Ω in these units are about 23 by 14 wavelengths. We

have used a grid of 1024 × 640 total grid cells (I = 512, J = 640), which gives

approximately 45 grid points per wavelength in the medium. We estimate that this

produces a discretization error of the order of a .5% in our calculated results.

Figures 5 give the intensity variations along the front and back interfaces, y = 0

and y = 5 µm, for the two cases (no polarizers vs crossed polarizers). They reflect

the focusing and interference effects caused by the spatial variation of the director

field (optic axis). In particular, considerable blockage of transmission is realized in the

case of crossed polarizers near those regions where the director field is approximately

uniform in the vertical direction (x = ±4 µm and, to a lesser degree, x = 0).
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These systems were modeled numerically as well by Liu and Kelly using the

Geometric Optics Approximation (GOA) and Beam Propagation Method (BPM).

Their results are displayed in Figs. 6. Comparing those results to our high-accuracy

approximations, we see that both of the approximate techniques (GOA and BPM)

give qualitatively correct solutions in this context, with BPM doing an especially

good job. This is to be expected, since this particular problem is very well suited

to that method of approximation: the problem is planar, and reflections play a very

small role. Our higher-resolution numerics contain finer detail and structure on a finer

scale.

9. CONCLUSION

We have considered numerical modeling based upon the time-harmonic Maxwell equa-

tions (THM) to characterize the optical properties of 1-D-periodic 2-D devices with

inhomogeneous and anisotropic dielectric properties. Our experience allows us to un-

derstand the intrinsic limitations of this type of approach and to make comparisons

to other approaches.

Methods such as BPM and GOA introduce approximations at the mathematical

level, whereas approaches such as ours (and the FDTD method as well) are dis-

cretizations of the exact mathematical model and, therefore, are in principle refinable

to whatever accuracy your computing resources can accommodate. For problems to

which BPM and GOA apply, those methods are more efficient than either of these

“exact” approaches. BPM and GOA ignore reflections, however, and so they are not

applicable to problems where these play a big role, as is the case, for example, with
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reflective displays. Besides being applicable in settings where approximate methods

such as BPM and GOA are not, refinable methods such as ours serve a useful purpose

as benchmarking tools for these other methods.

Our approach also has certain advantages over the FDTD method. In the first

place, it delivers time-harmonic quantities directly (which is a benefit when those are

the quantities of interest) and does not require time averaging a steady state solution

as FDTD would to obtain such values. In the same context, FDTD requires explicit

time stepping (within a numerical stability restriction on the magnitude of the time

step) to integrate numerically to steady state; whereas the THM approach affords

different methods for solving the discretized problem, including direct numerical linear

algebra or rapidly converging preconditioned iterative methods. The availability of

such a good preconditioner will be especially valuable for problems in three spatial

dimensions. A third advantage is that with the THM approach it is not necessary

to introduce any grid points outside the single cell containing one period of the film

layer—FDTD requires a truncated exterior grid with absorbing artificial boundary

conditions and such.

There are some disadvantages to our approach. It is more complicated to im-

plement (than BPM, GOA, or FDTD). As is the case with FDTD, it is a low-order

discretization method, O(∆x2 +∆y2), and so it requires 10’s of grid points per wave-

length in the medium to achieve acceptable spatial resolution of the electromagnetic

field variables. As indicated previously, for typical applications, this limits us with

our code to cell sizes on the order of 100 µm2 in area.

Another disadvantage is that the problems for the exterior fields E1, E2, and E3,
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which characterize the admittance maps C1 and C2 and the equivalent surface current

g1, can be degenerate for certain angles of incidence even when the full problem is well

posed (non-resonant). This can happen if the external components are lossless and

the numerical attenuation coefficient κ is taken to be zero, in which case there can be

“surface modes” for a finite set of angles of incidence. Using a positive κ easily removes

this difficulty, and this parameter can be tuned so that the error introduced into the

computed solution is below the level of the intrinsic numerical discretization error. If

accurate answers are desired for such angles of incidence, they can be obtained either

by extrapolation as κ → 0 or by interpolation from well-posed calculations at nearby

angles of incidence. Other approaches to closing the infinite-domain problem, such as

using a larger computational domain truncated beyond all of the device components

where artificial radiation boundary conditions are imposed, may not suffer from this—

of course this comes at the cost of having to deal with a much larger computational

domain and discrete system of equations.

For the exposition in this paper, we have limited ourselves to incidence in the

x-y plane, but this is not an essential restriction. Problems with non-planar incidence

(kz 6= 0) can be handled in the same way and produce very similar systems with a

few additional terms in the various integrals in the weak formulation, provided that

material uniformity in the z direction is maintained and the field is sought in the

form

E(x, y, z) = exp(ikzz)Ẽ(x, y). (81)

The restriction that is of a more fundamental nature is that of periodicity in one
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direction. That is what enables the reduction of the computational problem to a single

periodic cell, as well as makes it possible to construct a fast-direct preconditioner.

Many of the ideas utilized in our approach have come from other application

areas. Our objective has been to adapt them to this context and to develop the new

aspects necessary to make them effective here.
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A. APPENDIX: OUTER SOLUTIONS E1, E2, AND E3 FOR SINGLE

GLASS SUBSTRATE

In the case of a front component consisting of a single glass substrate, the external

field E1 associated with the Calderon operator C1 satisfies

∇2E1 + n2
rk

2E1 = 0, ∇ ·E1 = 0, −a < y < 0,

(82)

∇2E1 + k2E1 = 0, ∇ ·E1 = 0, −∞ < y < −a,

with boundary conditions specifying agreement with the total field on y = 0:

E1T(x, 0) = ET(x, 0), −L < x < L. (83)
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It also satisfies the quasi-periodicity conditions, Eqs. (11) and (12), and the interface

conditions (continuity of E1T and (∇×E1)T across y = −a), and it must be outward

radiating as y → −∞. It can be represented in the form

E1(x, y) =



∞∑
n=−∞

exp(iλnx)[exp(iµ̃ny)An + exp(−iµ̃ny)Bn], −a < y < 0

∞∑
n=−∞

exp(iλnx) exp[−iµn(y + a)]Cn, −∞ < y < −a

(84)

where

µ̃n =
√

n2
rk

2 − λ2
n, (85)

with the same convention as before for the value of the square root. The amplitudes

An, Bn, and Cn are to be determined.

The boundary conditions give

E1T(x, 0) = ET(x, 0) =

∞∑
n=−∞

exp(iλnx)EnT, (86)

where

EnT =
1

2L

∫ L

−L

exp(−iλnx)ET(x, 0) dx. (87)

Using these, together with the continuity of E1T and (∇× E1)T across y = −a, plus

the relations implied by Gauss’s Law (∇ ·E1 = 0), namely

λnAnx + µ̃nAny = 0,

λnBnx − µ̃nBny = 0, (88)

λnCnx − µnCny = 0,
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we obtain the following formulas for the components of the polarization vectors:

Anx =
(n2

rµn − µ̃n) exp(iµ̃na)

(n2
rµn − µ̃n) exp(iµ̃na) + (n2

rµn + µ̃n) exp(−iµ̃na)
Enx,

Bnx =
(n2

rµn + µ̃n) exp(−iµ̃na)

(n2
rµn − µ̃n) exp(iµ̃na) + (n2

rµn + µ̃n) exp(−iµ̃na)
Enx, (89)

Cnx =
2n2

rµn

(n2
rµn − µ̃n) exp(iµ̃na) + (n2

rµn + µ̃n) exp(−iµ̃na)
Enx,

and

Anz =
(µ̃n − µn) exp(iµ̃na)

(µ̃n − µn) exp(iµ̃na) + (µ̃n + µn) exp(−iµ̃na)
Enz,

Bnz =
(µ̃n + µn) exp(−iµ̃na)

(µ̃n − µn) exp(iµ̃na) + (µ̃n + µn) exp(−iµ̃na)
Enz, (90)

Cnz =
2µ̃n

(µ̃n − µn) exp(iµ̃na) + (µ̃n + µn) exp(−iµ̃na)
Enz.

From these we can determine the Calderon operator for the front, using Eq. (16):

C1(ET) = lim
y→0−

[−ŷ × (∇× E1)]T(x, y) = i

∞∑
n=−∞

exp(iλnx)

µ̃n

 αnn2
rk

2Enx

βnµ̃
2
nEnz

 , (91)

where αn and βn are as given in Eqs. (30).

The admittance map for the back of the structure, C2, is given by an identical

expression, with nr and a there corresponding to the relative refractive index and

thickness of the rear glass substrate, and with the En coming from transforms of the

total field along the rear interface:

EnT =
1

2L

∫ L

−L

exp(−iλnx)ET(x, d) dx. (92)

In fact, by virtue of the symmetries of our problem, the analogous outer solution field

E2(x, y) associated with the operator C2 (defined on d < y < ∞) can be expressed
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in terms of E1(x, y) via

E2(x, y) =


E1x(x, d− y)

−E1y(x, d− y)

E1z(x, d− y)

 (93)

and satisfies

[ŷ × (∇× E2)]T(x, d+) = [−ŷ × (∇×E1)]T(x, 0−). (94)

In a similar way, the external field E3 associated with the equivalent surface

current g1 satisfies the same vector partial differential equations as E1, Eqs. (82), as

well as the same quasi-periodicity and interface conditions. The problem formulations

for the fields differ only in the boundary condition,

E3T(x, 0) = 0, −L < x < L, (95)

and radiation condition: E3−Einc is outward propagating as y → −∞. The solution

can be represented in the form

E3(x, y) = exp(ikxx)


exp(ik̃yy)A + exp(−ik̃yy)B, −a < y < 0

exp(ikyy)Einc
0 + exp(−iky(y + a))C, −∞ < y < −a,

(96)

where k̃y = (n2
rk

2 − k2
x)

1/2 = µ̃0, from Eq. (85).

The amplitudes A, B, and C are determined exactly as for E1 above, from Gauss’s

law and the interface conditions, and are given by

Ax =
2k̃y exp(−ikya)Einc

0x

(n2
rky − k̃y) exp(ik̃ya) + (n2

rky + k̃y) exp(−ik̃ya)
,

Bx =
−2k̃y exp(−ikya)Einc

0x

(n2
rky − k̃y) exp(ik̃ya) + (n2

rky + k̃y) exp(−ik̃ya)
, (97)

Cx = −(n2
rky + k̃y) exp(ik̃ya) + (n2

rky − k̃y) exp(−ik̃ya)

(n2
rky − k̃y) exp(ik̃ya) + (n2

rky + k̃y) exp(−ik̃ya)
exp(−ikya)Einc

0x ,
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and

Az =
2ky exp(−ikya)Einc

0z

(k̃y − ky) exp(ik̃ya) + (k̃y + ky) exp(−ik̃ya)
,

Bz =
−2ky exp(−ikya)Einc

0z

(k̃y − ky) exp(ik̃ya) + (k̃y + ky) exp(−ik̃ya)
, (98)

Cz = −(k̃y + ky) exp(ik̃ya) + (k̃y − ky) exp(−ik̃ya)

(k̃y − ky) exp(ik̃ya) + (k̃y + ky) exp(−ik̃ya)
exp(−ikya)Einc

0z ,

with

Ay = −kx

k̃y

Ax, By =
kx

k̃y

Bx, Cy =
kx

k̃y

Cx. (99)

From these we can determine the equivalent surface current on Γ1, using Eq. (21):

g1T(x) = lim
y→0−

[ŷ × (∇× E3)]T(x, y)

= −4i exp(ikxx)


n2

rk
2 exp(−ikya)Einc

0x

(n2
rky − k̃y) exp(ik̃ya) + (n2

rky + k̃y) exp(−ik̃ya)

kyk̃y exp(−ikya)Einc
0z

(k̃y − ky) exp(ik̃ya) + (k̃y + ky) exp(−ik̃ya)

 ,

(100)

as given in Eq. (39).
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List of Figures

Fig. 1. Geometry of one periodic cell of model device: uniform in z, 2L periodic

in x, anisotropic and inhomogeneous layer Ω of thickness d, various front and

back components, interfaces Γ1 and Γ2, illuminated from below by a mono-

chromatic plane-wave source incident from an arbitrary direction in the x-y

plane.

Fig. 2. Individual finite-element mesh cell and associated local degrees of free-

dom of the discrete approximate solution. The complex electric field E(x, y) is

approximated locally by low-order polynomials. Ex is constant in x and linear

in y; Ey is linear in x and constant in y; and Ez is bilinear in (x, y).
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Fig. 3. Finite-element mesh. Horizontal edges correspond to Ex values, vertical

edges to Ey, and nodal values to Ez. The nodal and edge values along the right

boundary (boxes) indicate degrees of freedom removed by the quasi-periodicity

conditions (45).

Fig. 4. Director field of one periodic cell (8 × 5 µm) of idealized In Plane

Switching (IPS) device in the on state.

Fig. 5. Calculated intensities (relative to incident) of reflected and transmitted

radiation at the front (y = 0) and back (y = 5 µm) interfaces for IPS-mode

cell of Fig. 4: no polarizers (top), crossed polarizers (bottom).

Fig. 6. Calculations of Liu and Kelly37 using Beam Propagation Method

(BPM) and Geometric Optics Approximation (GOA) of intensity of trans-

mitted radiation at the back (y = 5 µm) interface for IPS-mode cell of Fig. 4:

no polarizers (top), crossed polarizers (bottom).
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Table 1. Maximum pointwise errors in discrete approximate solution for test

problem with a homogeneous, isotropic film layer of index of refraction nr = 1.5

surrounded by a free space. Problem parameters: incident light Einc(x, y) =

exp(i2πy)ẑ (normal incidence, z polarized, free-space wavelength = 1 unit),

film thickness d = film half-period L = 2
3

( = 1 wavelength of light in the film).

Discretization parameters: half-number of x grid cells I = number of y grid

cells J .

I, J Max error

8 0.145

16 0.356× 10−1

32 0.100× 10−1

64 0.262× 10−2

128 0.669× 10−3

Table 1, Amarasinghe et al.
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Table 2. Time (in seconds on a 240-MHz PA-RISC workstation) and number

of iterations to solve test problem (homogeneous, isotropic film layer of index

of refraction nr = 1.5 surrounded by a free space) using Bi-CGSTAB iterative

algorithm with and without preconditioning. Problem parameters: incident

light Einc(x, y) = exp(i2πy)ẑ (normal incidence, z polarized, free-space wave-

length = 1 unit), film thickness d = film half-period L = 2
3

( = 1 wavelength of

light in the film). Discretization parameters: half-number of x grid cells I =

number of y grid cells J , zero-vector initial guess, 10−4 maximum absolute

error stopping tolerance.

Not preconditioned Preconditioned

I, J Iterations Time (s) Iterations Time (s)

8 451 1.70× 101 4 0.00

16 1,702 2.68× 102 4 1.00

32 6,190 3.93× 103 4 4.00

64 23,654 4.91× 104 4 1.80× 101

128 4 8.70× 101

Table 2, Amarasinghe et al.
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