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Abstract

The Internet Accessible Mathematical Computation (IAMC) framework aims to make it
easy to supply mathematical computing powers over the Internet/Web. The protocol-
based IAMC framework enables developers to create interoperable clients and servers
easily and independently. Presented are conceptual and experimental work on the
TAMC framework architecture and major components: the Mathematical Computa-
tion Protocol (MCP), a client prototype (Dragonfly), a server prototype (Starfish), a
mathematical encoding converter (XMEC), and an open mathematical compute engine
interface (OMEI).
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1. Background

Mathematical computing is inevitably becoming distributed over the Internet — for easy distri-
bution of mathematical materials; to make specialized computations widely accessible; to allow
easy interoperability; and to aggregate functionalities from different systems. Indeed, making
mathematical communication easy over the Internet has many potential applications. While
various methods have been used to display mathematical formulas in Web pages and to make
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simple mathematical computations accessible via CGI programs or X Windows (ICM live de-
mos, 1999-2001), a general and effective architecture/framework for producing and delivering
active mathematical content is still the subject of research and development.

Investigators at the W3 Consortium and elsewhere are working to make publishing math-
ematical materials on the Web easy. MathML (Ausbrooks et al., 2000) defines an SGML
language for markup of mathematical expressions with support for both presentation (display
layout) and content (computation semantics).

The IBM digital publishing group has released the experimental Techezplorer (Dooley, 1998),
a Web browser plug-in that dynamically formats and displays documents containing scien-
tific and mathematical expressions coded in TEX or ITEX. Some MathML is also supported.
Techexplorer also allows a user to send expressions to a fixed compute server for evaluation.
MathType (Design Science, Inc., 2000) supports interactive creation of mathematical notations
for web pages and documents. The same company also offers WebE() that provides a Java ap-
plet to display WebTeX and MathML in a browser. The W3 Consortium’s Amaya Web browser
demonstrates a prototype implementation of MathML which allows users to browse and edit
Web pages containing mathematical expressions (Vatton and Quint, 2000). Together with the
rest of the Web page, these expressions are manipulated through a WYSIWYG interface. The
increasing acceptance and software support for MathML were evident at the recent MathML
International Conference (2000).

JavaMath (Solomon and Struble, 1998) is a free software package enabling Java-based math-
ematical programs to use the computational capabilities of existing compute engines. JavaMath
can be used for stand-alone applications and for construction of Internet based client-server
systems and Web pages. Different from JavaMath, the IAMC framework provides a general
infrastructure for building Internet/Web-based mathematical computation and education sys-
tems. The framework is programming language independent and based on a standard proto-
col. The framework also follows an open programming interface specification for mathematical
compute engines.

IAMC

Mathematical content viewing on a Web page is static. On the Internet, end-users and appli-
cations can make good use of dynamic access to mathematical computing. “Internet Accessible
Mathematical Computation” has been the subject of the 1999 IAMC Workshop (part of IS-
SAC’99) and the 2001 IAMC Workshop (part of ISSAC’01). The full-day workshops underscore
the continued interest in making mathematical information and computation easily available
in the modern communication age (Linton and Salomom, 1999; Weber and Kiichlin, 1999). For
more background and related activities, please refer to the IAMC homepage (1999-2001), the
online Proceedings of both workshops : IAMC Workshop (1999) and TAMC Workshop (2001)
and those of the Future of Mathematical Communication Workshop (1999).

An ongoing research focus at the Institute for Computational Mathematics (ICM /Kent)
has been on the communication of semantically rich mathematical data in a distributed, het-
erogeneous environment. An earlier project explored the efficient encoding and transmission
of mathematical data among heterogeneous compute engines (Gray et al., 1994, 1998, 1999).
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More recent work has focused on the design and implementation of the IAMC framework (Wu,
1998; Wang, 1999).

The IAMC framework

The TAMC framework aims to make it easy to connect and interoperate heterogeneous mathe-
matical clients and servers, to support both interactive and transparent access to mathematical
computation on the Internet/Web through a suitable protocol, and to provide customizable
software prototypes and libraries to make setting up Internet-based mathematical services
easy.

The following are some potential applications of IAMC.

e From the end-user perspective: easily accessing remote mathematical computations and
databases, including access to highly specialized computing services; the possibility to
exchange and further process computational results among different compute servers.

e From the developer perspective: making math-oriented data and services easily and widely
accessible on the Internet in many contexts (Web vs Email, small vs large bandwidth,
etc.); simplify the use of emerging technologies and standards such as MathML (Aus-
brooks et al., 2000), OpenMath (Abbott et al., 1996), UDDI (2000), SOAP (2000), WSDL
(2001), etc.

e More generally: the possibility to speedup building and adoption of innovative mathe-
matical software under the form of “Web services” in the areas of mathematical research,
engineering, computer-aided mathematical education and distance learning.

In terms of design (and implementation), our main goal with the IJAMC framework is to
provide a coherent set of customizable software components and libraries that can be used
either

1. together, for setting up a specific distributed mathematical software system;
2. or independently, in other mathematical software applications.

Each component of the IAMC framework is explicitly designed for independent re-use outside
of the framework. Furthermore, the IAMC framework architecture is kept flexible so that it
can be extended and tailored as needed, to be used as a testbed for research or as a platform
for software development.

This way, we hope to achieve maximum flexibility, for ourselves and others, in the continued
development of Internet-based mathematical services.

Reported here are advances in the design, architecture, protocol, data encoding, and software
prototyping for the distributed IAMC framework.

2. TAMC Framework Architecture

The TAMC framework is designed to make mathematical computing easily accessible on the
Web /Internet (Wang, 1998, 1999). It follows a multi-layer architecture to gain performance and
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Figure 1: IAMC Architecture

scalability. This architecture can also be expanded easily to meet the requirements for Web-
based mathematical computation and education services. Figure 1 shows the architecture of
the TAMC framework. The TAMC framework consists of the following components:

1.

TAMC client (Icl) — An end-user agent for accessing services provided by any TAMC
server. Dragonfly (see Section 6.1) is a prototype Icl implemented in Java.

. TAMC server (Isv) — A program to provide mathematical computation powers through

the MCP protocol. An Isv may or may not employ an external compute engine to perform
mathematical computations. Starfish (see Section 6.2) is a prototype Isv implemented in
Java.

. Mathematical Computation Protocol (MCP) — IAMC clients and servers are connected

by the Mathematical Computation Protocol (see Section 3). MCP aims to be a simple and
efficient request-response protocol to support both one-time transactions and interactive
sessions. MCP supports automated computation requests from applications that trans-
parently contact servers for mathematical computation and/or information. For example,
an HTTP request may trigger server-side actions that obtain mathematical results from
an Isv via MCP.

. Mathematical Data Encoding — Standard and user-defined mathematical data encod-

ings can be used within MCP (see Section 4). Standard formats (such as MathML, MP,
or OpenMath) allow heterogeneous mathematical programs to interoperate. The TAMC
framework allows plug-in format converters on the client and the server side, to support
additional formats. Automatic negotiation between the Icl and Isv at the beginning of
a computation session determines the encoding(s) used. The TAMC framework also pro-
vides XMEC, a versatile mathematical encoding converter that has wide applicability
(see Section 4).

. External Engine Interface (EEI) — The EEI is the boundary between an IAMC server

and an external compute engine. The implementation of the EEI is an engine-specific
driver that handles translation between the format of the request supplied by the Icl
and the format of the compute engine (and similarly for responses from the engine). To
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simplify the construction of drivers, we have defined as part of the TAMC framework
the Open Mathematical Engine Interface (OMEI), an API specification for interfaces to
mathematical compute engines (see Section 5).

Dragonfly (Liao and Wang, 1998), Starfish (Liao and Wang, 2000), JMP, an OO imple-
mentation of MP (Gray et al., 1999; Tong, 2000), and the eXtensible Mathematical Encoding
Converter (XMEC) have been implemented in Java. The Dragonfly-Starfish approach makes
interactive mathematical computations accessible and interoperable over the Internet; XMEC
facilitates the development of practical IAMC systems.

The prototype Icl and Isv were built to test the effectiveness of the IAMC architecture
and evaluate/improve the MCP protocol. JMP and XMEC are independent of the IAMC
framework and could easily be used in other applications.

3. The Mathematical Computation Protocol (MCP)

For connecting TAMC clients to servers, we need a well-designed protocol that makes accessing
mathematical computation on the Internet effective and efficient. MCP, the Mathematical
Computation Protocol, aims to be the core of such a protocol. Important characteristics of
MCP include:

¢ Handling one-time computation requests and persistent computation sessions.
e Placing no restrictions on content types or mathematical data representations.
e Permitting both server and client to send requests and to return responses.

e Providing for both synchronous and asynchronous message exchanges.

e Distinguishing protocol control from computation control.

e Being simple, effective, and extensible.

As described in its original design (Wang, 1999), MCP uses HTTP-style requests and re-
sponses to support mathematical computation sessions. Specific MCP requests belong to dif-
ferent classes that contain request methods to support well-defined operations. Following the
0O philosophy, each MCP request class defines a set of methods that can be invoked. Standard
MCP request classes include:

e Initialization — The initialization class supports session creation and configuration
right after client-server connection.

e Control — The control class supplies MCP protocol control and management methods
for both the client and server side.

e Computation — A class of server-side operations to perform application supported com-
putations.

e Dialog — A class of client-side methods to solicit information from the end user.

As in HTTP, status codes and strings are used in responses to indicate error and exceptional
conditions.
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4. Mathematical Data Encoding

The MCP protocol allows any content type to be transported within the MCP message enve-
lope. In principle, IAMC servers and clients can use any mathematical data encoding they wish.
In practice, clients and servers should use standardized and widely understood mathematical
representations.

It is reasonable to assume, at this point, that MathML will become a standard. Hence,
MCP has some built-in support for MathML. It has a converter module MathML_MP that
can convert between MathML and MP. Because MP is a very compact binary encoding, it can
perform MathML compression before network transmission. For the same reason, MP can be
used in place of MathML when data size and/or the frequency of data exchanges creates a
serious performance bottleneck (Avitzur et al., 1995).

MathML defines the default semantics of content encoding elements. The definitions are in
OpenMath format. For a content element, the definitionURL and encoding attributes can
specify a particular content dictionary (CD) and its definition format, respectively. Further,
the <semantics> tag can be used to attach CD or other semantics mapping information to
content-encoded expressions. MCP is designed to allow any math encoding using any CDs.
It supports Isv-Icl negotiation on the CD set to use via the dictionary-map method in the
initialization class. Adding/deleting from the CD set during the computation session is
also supported. Internally, MCP stores the CD set in a CD map, so integer indexes can be
used in place of CD tags for data compression purposes.

The eXtensible Mathematical Encoding Converter (XMEC)
A typical data flow through the IAMC framework is:

1. The user enters input in infix notation.

2. The Icl parses the user input and translates it into MathML content encoding.

3. MathML content data is sent through MCP with automatic MP compression/decompression.
4

. The Isv sends MathML content encoding to the compute engine through the engine’s
OMEI driver.

5. The OMEI driver converts the MathML content encoding into the engine’s specific syntax
and representation, and submits it to the engine for evaluation.

6. The OMEI driver retrieves the result from the compute engine and converts it into
MathML content and/or presentation encoding.

7. The Isv receives the MathML content and/or MathML presentation result from the engine
driver.

8. The Isv sends the result back to the Icl via MCP.
9. The Icl GUI gives the MathML presentation code to a renderer for display.
This typical scenario clearly illustrates the need for mathematical data format conversions

in a distributed computation environment, especially when heterogeneous components are
involved. As part of the IAMC framework, we have designed and implemented XMEC in Java
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Figure 2: XMEC in the IAMC Framework

(see Figure 2), based on JMP, an OO implementation of MP in Java (Gray et al., 1999; Tong,
2000).

XMEC provides native support for translations among infix notation, MathML, and MP. As
a side benefit, experiments with MathML-MP conversions have shown good conversion speeds
and significant data compression. It may be advantageous to convert large MathML results to
MP before sending them through the network.

XMEC plays an important role within the TAMC framework. Both the MCP library and
OMEI drivers (see Section 5) can use XMEC as a built-in component. However, XMEC can
also be used outside the IAMC framework as a standalone mathematical encoding converter
(or as part of another software framework). Its design makes it suitable whenever there is a
need to convert from one encoding to another, either “by hand” (on end-user request) or “on
the fly” as part of a Web-based software architecture. XMEC has been demonstrated at the
TAMC’2001 Workshop (Zou, 2001) and is available from the IAMC framework site (1998-2001).

MathML/Graph

In addition to expressions and formulas, IAMC also supports plotting of mathematical curves
and surfaces. To represent graphing requests and results, we devised an XML-based format
called MathML/Graph which can be viewed as a graphing extension to MathML and can be
used within TAMC or independently.

With XML we define several new tags, including <mathGraph>, for representing a plotted
graph; <mathPlot> for issuing plotting requests; <range> and <coordinates>.

Generally, a curve or surface may involve many points and the representation can become
extremely large. As suggested in Avitzur et al. (1995), binary encoding and data compression
techniques can significantly reduce the size of data to be transmitted and the overall encoding +
transmission 4+ decoding time. Within the IAMC framework, MathML/Graph can (should) be
compressed by the MathML_MP converter bacause MP is particularly efficient in representing
floating-point arrays.
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5. The Open Mathematical Engine Interface (OMEI)

To make the IAMC framework valuable, many useful computational services must be made
available. Hence, it is important to be able to create IAMC services easily. The generic Starfish
(see Section 6.2) runs on any Java platform and goes a long way in this direction. But con-
necting to external computation engines must also be made easier. For example, JavaMath
(Solomon and Struble, 1998) supplies a uniform API to make it easy for Java-based programs
to access existing compute engines.

We have the initial specification of the Open Mathematical Engine Interface (OMEI) (Liao
et al., 2001) to govern how TAMC servers and external compute engines interface. Making
different compute engines interoperate is a challenge. The semantics and behavior of most
compute engines are not even specified completely (Fateman, 1996). Work on OMEI and the
TAMC framework must proceed in this less than ideal context.

Figure 3: Interfacing Using OMEI

OMEI (Liao and Wang, 2000) is language independent and modeled after the standard
database programming interface CLI (Call-Level Interface). OMEI specifies a standard API
to create connections, obtain capabilities, retrieve help /documentation, formulate and execute
commands, receive results, etc., for mathematical compute engines (see Figure 3). Developers
can map OMEI to different programming languages and implement OMEI drivers to provide
access to different applications. The OMEI driver is a software module that provides a uniform
API to different mathematical engines (see Figure 4). The engine end of a driver needs to be
customized for the compute engine to which it is to be attached. A compute engine designed
to go online may support OMEI directly, or may bypass the OMEI driver.

1 Exi sti ng
QOVEI 1 PC Mat h
| Engi ne

Figure 4: Interfacing with an OMEI Driver

The OMEI specification plays a very important role in the TAMC framework; it governs and
simplifies how TAMC servers interact with compute engines. To respond to client requests and
perform computations, the IAMC servers have to load OMEI drivers first.
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OMEI was specified by studying existing engines. It establishes several categories of function
descriptors to encapsulate properties of compute engines and thus gives a unified programming-
level interface for heterogeneous mathematical engines. The OMEI implementation prototypes
(see Section 6.3) supports several categories of operations for server-engine interaction:

1. Connecting to/disconnecting from a compute engine.
2. Querying engine capabilities.

3. Creating commands.

4. Executing commands.

Connecting and Disconnecting

Before the computational power of a compute engine can be exploited, a communication chan-
nel must be established. This channel is vital for server-engine interaction because it is how
the commands are transmitted and the results obtained. The communication channel could
be a simple inter-process communication (IPC) pipe or socket, or a network link based on
a communication protocol. Usually, a channel must also contain the context for the specific
server-engine pair. Such context information includes the current command, the status of its
completion, the result after the command execution is completed, and the error information if
the command cannot be executed.

In OMEI, the term Connection refers to the communication channel and the term Connection
Handle refers to the connection context. Before a connection is established, a connection handle
must be allocated. This connection handle can be freed after the connection is closed.

Querying Engine Capabilities

Once a connection is established, the application is ready to interact with the compute engine.
Before submitting the actual computation requests to the engine, the application can inspect
the computational capabilities supported by the compute engine.

Four types of engine capability information can be requested:

e A CanDo list that tells what computations the engine can provide for this specific con-
nection.

e Help information for each individual command.

o Command template that gives the syntax of an individual command.

o Mathematical encodings supported.

Creating Commands

A command can be created in three different ways: by supplying a string for the command,
by giving a file containing a mathematical expression, or by making several OMEI calls to
specify the command name and arguments. In the first and second approaches, the command
can be either a literal string representing a native command for the engine, or math-encoded
in a format such as MathML, OpenMath or MP. In the third approach, several OMEI calls
are used to specify the command name and arguments.
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Executing Commands

Once a command has been created, it can be sent to the engine for execution. The execution
can be either synchronous or asynchronous, and it may be interrupted or cancelled before
it is completed. As a result, a group of function descriptors has been created to launch and
coordinate the command execution.

6. Software Prototype for IAMC Framework

In this section, we will introduce our software prototyping for the distributed TAMC framework.
They were built to test the effectiveness of the IAMC architecture and evaluate/improve the
MCP protocol and OMEI specification.

6.1. Client Prototype: Dragonfly

Dragonfly (Liao and Wang, 1998) is a prototype IAMC client implemented in Java. Distinct
from other front ends, Dragonfly is a protocol-compliant, full-featured graphical user interface
for accessing any TAMC compliant server. Dragonfly can:

e Connect to and communicate with any user-specified IAMC server via the MCP protocol.

e Obtain capability and usage documentation from the IAMC server and make them avail-
able to the user, including presenting command templates from the server to the user
when requested.

e Receive computational, control and help commands from the user, encode and send them
to the server.

e Receive and decode results from the server.

e Display mathematical symbols and expressions in textbook-like fashion and allow selec-
tion of subexpressions with a mouse.

e Plot mathematical curves and surfaces.

e Save mathematical results in files under well-defined formats such as MP, MathML, and
OpenMath.

e Display server dialog and relay user data thus obtained back to the server.

Furthermore, Dragonfly is designed for extensibility allowing easy addition of features and
functionalities. Built on the Java 2 platform, Dragonfly employs:

e Swing to implement the GUI and the HTML-based help facility.

e Java 2D to support 2-dimensional and 3-dimensional mathematical function plotting and
manipulation.

¢ WebEQ to render mathematical expressions in MathML presentation code.

e XML to help encode/decode graphing data.
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The current version of Dragonfly connects to one server at a time. To connect to multiple
servers, the user has to open multiple Dragonfly instances. The user can use the “Copy/Paste”
mechanism to exchange information among different Dragonfly instances. The ability to con-
nect to multiple servers and issue concurrent computations is important and is planned for a
future version.

6.2. Server Prototype: Starfish
An TAMC server (Isv) uses MCP which has the IANA registered user port

mcp-port 3558/tcp  MCP user port
mcp-port 3558/udp MCP user port

Once connected, the Icl and Isv conduct business using MCP. When the computation session
is done, the Isv terminates. An TAMC server has the following functional requirements:

e Be MCP compliant and easily customizable, for example, by allowing plug-in modules for
extensibility.

e Maintain and manage computation sessions.

e Launch/control external compute engines dynamically.

e Support synchronous/asynchronous calls, callbacks, and client-generated interrupts.
e Handle MCP computation requests either synchronously or asynchronously.

Starfish is our TAMC server prototype implemented in Java. Through Java multi-threading,
Starfish can support multiple concurrent Icl connections. Starfish uses a property file to identify
the engines available to it and to locate and dynamically load OMEI drivers (see Section 6.3)
for particular services. This provides great flexibility, allowing Starfish to dynamically bind to
a compute engine based on the nature of the client request. Starfish also has an administrative
GUI for configuration and activities monitoring.

6.3. OMEI Driver Prototypes in Java

Starfish loads OMEI-compliant drivers implemented in Java to access external compute en-
gines. We call the Java definition of OMEI Java Mathematical Engine Interface (JMEI). To
interface a specific compute engine, JMEI can be applied in these three approaches:

1. To use inter-process communication (IPC) to access the mathematical engine, a JMEI
driver may utilize the java.lang.Process and java.lang.Runtime facilities.

2. To use procedure calls to access the engine, a JMEI driver may employ the Java Native
Interface (JNI) scheme. This approach is feasible only if the compute engine provides an
APT for a host language that JNI supports.

3. To use networking to access a remote engine, such as Mathematica, a JMEI driver can
use a 2-layer approach as shown in Figure 5. In this approach, the JMEI driver becomes
a front end to the engine-defined networking interface.
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Figure 5: Implement a Network-Enabled JMEI Driver

The IPC approach is the most general, and consequently the most complicated to implement.
If the computational package only supports a runtime system for interactive use — that is,
without API support for any mainstream programming language — the JMEI driver must be
IPC-based. In this case, JMEI employs a two-way pipe between itself and the compute engine.

The complication for the IPC approach lies in the synchronization between the process’s
input channel and output channel. To read the execution results, the beginning and end of
the result for each command must be identified correctly. This may become quite involved
if we take into consideration that the result may be an error message. The solution is often
engine-specific. This is greatly simplified if the compute engine can output results and errors
in a structured format such as MathML.

For the prototype ITAMC framework, we have implemented JMEI drivers for Maxima with
IPC approach and for Mathematica by using J/Link. The Mathematica JMEI driver is network-
enabled to allow an application to interface with Mathematica running on a romote host. OMEI
has also been applied to interface ELIMINO (Wu et al., 2002) with Dragonfly providing this
specialized mathematical tool with a local and remote GUI.

7. Conclusions and Future Work

The TAMC framework is an effort to establish a protocol-based, platform, programming lan-
guage, and mathematical encoding independent, solution for serving mathematical compu-
tation over the Web/Internet. In the Framework, connectivity between client and server is
defined by the Mathematical Computation Protocol (MCP) while connectivity between ITAMC
servers and external compute engines follows the Open Mathematical Engine Interface API
specification. The design helps make the TAMC framework open, effective, and efficient. Some
parts, such as OMEI, Dragonfly, JMP, and XMEC, are of interest in applications independent
of the TAMC Framework

Our group at ICM demonstrated Dragonfly, Starfish, and XMEC at the IAMC Workshop
(2001). Work on the specification and library implementation of MCP and the XML imple-
mentation of MathML/Graph is ongoing. We are also considering a Web-based search engine
for end-users to locate TAMC servers that support particular computations and converting
Dragonfly into a valid plug-in to be used with Netscape.
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One of our goals is to create a coherent collection of reusable Java components covering all
aspects of an effective IAMC implementation based on existing and emerging Web technologies
(e.g., XML, MathML, MP, OpenMath and for the close future UDDI, SOAP, etc.) Those
components are intended to form a flexible framework usable as a testbed for research or a
platform for software development. Each component is also intended to be separately re-usable
outside of the framework. Our prototype implementation of the IAMC framework, including
MCP, Dragonfly, Starfish, OMEI, and XMEC, represents a first step in this direction.

We hope to collaborate with more people in different parts of the world. The goal is to make
mathematical computations easily accessible in many contexts world-wide. Our progress can
be tracked on the IAMC framework site (1998-2001).
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