

WME Site Organization and Customization Support

David Chiu
Institute for Computational Mathematics

Department of Computer Science
Kent State University, OH

dchiu@cs.kent.edu

ABSTRACT

Minimizing work effort in deployment of mathematics
educational Web pages calls for an encapsulation of
lesson material into self-contained Topic Modules.
Methods for creating interoperable content pages,
supporting automatic page generation, enabling page
configuration, and allowing user customization are
presented.

INTRODUCTION

A Web-based Mathematics Education (WME) [1] Website
was deployed to a group of 7th grade students at Kimpton
Middle School (Munroe Falls, Ohio). This pilot Website
offers online activities to aid mathematics lectures. The
WME site requirements and our initial findings for this
project are reported in [2].

 At the time of developing the pilot Website, the
parallel development of the Mathematics Education
Markup Language (MeML) [3] and the MeML processor
[3] were still under investigation. In fact, their progress
was reliant on the results produced by the pilot. This
feedback is used to assess MeML and Woodpecker's
feasibility in an arrangement to amend or deprecate its
existing elements which may turn out to be
extemporaneous from a lack of experimenting in realistic
situations. Fortunately, because the pilot project was
initiated during the school year, feedback from both
students and faculty were instantaneously available. With
this steady stream of feedback, we compiled a general set
of requirements for Topic Modules:
• A Means for Efficiency --- A way to maintain quick and

persistent progress in the development of the pilot
Website is necessary in order to stay on pace and
synchronized with the ongoing classes at Kimpton
Middle School.

• Topic Modules --- Mathematics topics (percentages,
proportions, fractions, etc) are viewed as modules that
can be loaded/unloaded from any Website built on the

WME Framework. These self-contained Topic
Modules (TMs) consist of a set of Topic Lesson Pages
(TLPs) which contains mathematical lessons, exercises,
activities, etc, that are designed to complement the
physical lectures given in a classroom.

• Interoperability and Relocatability --- A means to
seamlessly incorporate or relocate mathematical TMs
into WME websites is quintessential to the WME
Framework [4].

• Customization --- Support for custom configurability is
certainly necessary in the likelihood that a teacher
chooses to customize lessons within TMs to better fit
his/her method for teaching. It also allows for the same
TM to be used by different teachers and classes within
schools to maximize code (or in this case, lesson)
reuse.

The pilot site employed many areas where hard-coding
fulfilled much of the implementations of the above
requirements. For example, our preliminary TMs and TLPs
were designed specifically for the requirements of
Kimpton's teachers and courses with content that are
customized fully to their needs -- far from WME's ultimate
goal. Yet, hard-coding provided us with enough
information to explore its practicality and envision the
design of pragmatic tools to support a generalized method
for WME support .

WME SITE CONFIGURATION

For a Website to be WME compatible, a series of XML
files, WME Site Configuration Files, must be existent on
the Web server. These files contain Website-wide data
such as a list of installed TMs and information regarding
the school's teachers, students, and courses. WME Site
Configuration Files represent an intricate part of WME
site, as they provide information to TMs in a way to define
the relationships needed for supporting interoperation and
customizability. In fact, TMs shall be designed in such a
way that it always anticipates WME Site Configuration
Files to be readily available. The technical aspects of these
files are discussed in [8], which we will later revisit.

INSIDE TOPIC MODULES

Most people that we envision using WME are not
necessarily computer scientists. In light of this, WME aims
to provide a trivial environment to deploy mathematics
educational material onto the Web. In an attempt to
achieve this goal, we lessen the amount of work needed
from a potential user's point of view (a school
administrator or a math teacher). This basically involves
minimizing the amount of effort needed to not only load or
unload TMs into WME sites, but to see that they are
immediately operable or relinquished. Provisions for this
intuitive site management implicate higher file
complexities in TM designs to assure self-sufficiency. In
other words, TMs must be supplied with not only lesson
Web pages, but also its own set of configuration files
bounded onto the assumption of the presence for WME Site
Configuration Files -- its only dependency. One might be
inclined at this point to speculate as to why any link back
to the WME site is necessary. Clarity may arrive with later
sections on relationships.

Inclusive within every TM are the following files [8]:
• Template Files --- The basic structural content defining

the fundamental "look and feel" for every TLP within
the module.

• Content Files --- The text, illustrations, demos, etc that
needed to convey mathematics lessons. A caveat is that
one TLP may contain multiple content files.

• WME Service Files --- The optional inclusion of these
files offers local WME Service procedure calls. These

might contain simple on-the-fly calculations and page
manipulations.

• Assessment Files --- A set of two files containing
questions and feedback. The question file contains
teacher-defined questions for specific TLPs. The
response file contains the student feedback to these
questions.

• Configuration Files --- The set of XML files that marks
the only dependency link to the WME site.

The final item in the list above provides the
foundational trestle in supporting interoperation and
customization. These files can be seen as an inner-TM
database maintaining such information as which distinctive
files are needed for the creation of TLPs, a guide for
mapping customization values to their respective pages,
etc. The individual files in the set of Configuration Files
are identified here:
• tm_conf.xml --- Contains static TM information such as

its version, the author, etc. Also defines each TLP's file
structure, discussed in the following section.

• tm_customization.xml --- Contains manipulative
parametric values for TLPs.

• tm_map.xml --- Defines the relationship values from
the TM to the WME site. Here the only place where
alien WME site information is introduced into the TM
(teacher or course information specific to the site).

From Figure 1, every TLP is the collective assembly of
the template, content files, and WME Service files, with
selective data drawn from the customization and
assessment files. Next, we discuss this architecture.

FIGURE 1. A Topic Module Architecture

THE TM ARCHITECTURE

For clarity, we will discuss the architecture given by
Figure 1 in detail in respect to its integral parts starting
from the primary level component, a single TM. The
organization of a TM is in essence a makeup of multiple
TLPs. Aside, "TLP" is actually rather deceptive in its
name. A single TLP is in fact a skeleton that contains
nothing but file-include statements -- basically an acting
container for the inclusion for miscellaneous files that
ultimately define its logical existence. These definitive
files exist in the tertiary level of our figure.

 From a fleeting glance, it is easy to conclude that the
Template is included with every TLP skeleton. This is no
surprise. After all, templates are by nature a global entity
in order to efficiently spread its elements to onto its
employers (in our case, TLPs). Thus, one modification to
the global template affects all TLPs. The template allows
for simple and quick deployment for consistent results --
the basis of adding design and style for all TLPs.

 Dissecting further, it seems that tertiary level
components, such as Content Files, instinctively spider
across the platform to create the intuitive illusion of TLPs
that are neatly juxtaposed in the secondary level. Later, we
will explore how the tertiary constituents are mapped in
respect. But first, we delve into why the ostensible
singularity of TLPs must be divided into smaller parts.

After the inclusion of the design template, the TLP
skeleton appends its content files. The skeleton structure of
TLPs is to offer robustness by exploiting dynamic content
generation. For instance, TeacherA might use some TLP,
add_fractions.meml , with some fraction addition content
that is only relevant to him/her. In contrast, TeacherB's
rendition might have a slightly different organization or
entirely dissimila r content. However, in either case, the
same file entity, add_fractions.meml , is displayed on the
browser -- just different versions per its teacher.

Notice the disparities between TLP0 and TLP1 in
Figure 1. TLP1 includes multiple content files -- but why?
While the impetus behind this mock TM example might be
elusive, reasons for supporting multiple content files have
been the catalyst for recent discussions of allowing
Administrative Page Control -- in particular to "page
blocking". In fact, page blocking is not a novel concept.
Recall back to grade school when teachers can force an
entire class to focus on a distinctive section of their light-
projected lecture notes by allowing some pieces of
strategically positioned papers to offer its opacity on the
projected image. The resulting image projection, of
course, is the focal point. By splitting a full set of
"electronic" lecture notes into sections placed in multiple
content files, TMs achieve similar effects. While lecturing
during a WME-enabled class session, a teacher can

simultaneously control which page sections should be
hidden or displayed at any particular point in time. How
these sections shall be broken up (in other words, how
many content files per TLP), is, of course appropriated by
the teacher as they see fit for their lecture.

This content splitting can also useful for lesson sharing.
For instance, TeacherA creates some content file to his/her
liking. In a different class, TeacherB can use TeacherA's
provisions by opting for an exchange or inclusion of
TeacherA's newly devised lecture. Again, this is nothing
new or exciting as file inclusion has already been widely
used by the industry to offer this type of dynamic content
presentation. But the advantage here is that WME
interoperability not only guarantees dynamic content
display, but also the immediate recognition and operability
of the "newly" generated TLP without user intervention.

But even if TeacherA devised his/her lecture content, it
would infer TeacherA be knowledgeable with the TM
architecture, or perhaps even HTML and other Web
technologies -- not exactly a strong assumption for us to
make, but we nonetheless leave this option open. Instead, a
less drastic approach for manipulating TLP content is done
through configuring page customization values.

We trace back to the example posed by Figure 1.
Subsequently after inserting content file(s), the TLP
skeleton summons for page customization data. Seen in the
figure as rectangular boxes bearing a dotted-line border,
customization data are not to be confused with actual files.
While all customization values originate from a single file,
tm_customization.xml, the difference here is that the TLP
skeleton includes only those custom data values specified
for the TLP in question, and not the entire customization
file. These custom values populate predefined placeholders
in the template or TLP content files. Again, arranging the
need for per-teacher or per-class customization, TLPs rely
on the values defined in tm_customization.xml to give
itself not only substance, but the lesson conveyed to the
teacher's liking.

Alluding from prior discussion, WME Service Files are
actually incorporated into the skeleton before content files.
Often, Content Files contain procedure calls to achieve
some form of student interaction such as responding to a
mouse click in an activity or checking students' answers in
exercise questions. These WME Services [1] can be issued
locally via a Web program or invoked remotely through
the Mathematics Education Service Protocol (MES P) [1].
Because there are two types of WME services, there exist
two methods of invocation:
• Local WME Service Invocation --- Local WME service

invocation can be achieved by using any arbitrary
function call -- as long as the function is defined and

programmed locally on the server, inside WME Service
Files.

• Remote WME Service Invocation --- In order to invoke
a remote WME service (i.e. the procedure exists
elsewhere off the invoking server), the URL of the
function call is appropriated. Function parameters and
result data are placed directly inside page markup, and
are passed back to the WME server specified by the
URL via MESP.

Indeed, it is both likely and conceivable that various
content files might share the need for identical local WME
Service invocations. Thus, the TLP skeleton might include
multiple WME Service Files. TLP0 and TLPN in Figure 1
illustrate this behavior. Also notice the additional link
between TLPN and a remote WME Service, resident on
some other WME server, communicated through MESP.

Finally, the optional assessment data is appended to the
TLP skeleton. Note that by now, our TLP skeleton has
gathered the body of its substance: template for style
definition, WME service files to handle local procedure
calls, and lesson content including text, graphics,
exercises, etc. In the rear end of the lesson page, the
skeleton affixes any student assessment questions. Its late
positioning is, nonetheless, well-exceeded by its practical
importance: allowing teachers to assess students'
understanding of the mathematics lesson topic depicted in
the TLP. Like that for customization data, the TLP
skeleton resists the inclusion of the entire assessment
question file, tm_assessment.xml . Only relevant
assessment data is incorporated into the TLP. On the other
hand, the inclusion process is more complex than the
inclusion of customization values, which simply involves
populating page variables. A search query is run to
uncover all assessment questions related to the TLP in
question. This list of questions is then further refined
depending on which course is in session and who is
teaching it . The final question list is displayed at the end of
the page. The students' response to these assessment
questions must also be communicated and accommodated.
Their response is placed into the question file's
counterpart, student response file: tm_response.xml .

At this point, we are left partially clear as to how TLPs
are dynamically generated. The above describes the TM
architecture and a TLP's general organization in
accordance to a skeleton for dynamic file incorporation.
Yet, the governing rules for not only the maintenance of
this crucial organization, but also the management of page
customization and interoperation lie deeply within the
briefly described TM Configuration Files.

MANAGING RELATIONSHIPS

By observing the above physical model, we are drawn to
the inference that TMs are, for the most part, self-reliant.
But a bit of contemplation leads one to deliberate a TM's
efficacy without some information from its employers.
How useful are a TM and the lessons that it attempts to
convey without any intuitive direction for its usage? How
would a TM be able to offer its per-class and per-teacher
customization services when both entities are indigenous
to the system, and not to TMs? To answer this, a very
obvious link between the TM and the WME Website must
be established. Next, we discuss support for the data link
in both directions, but it should be mentioned that we are
not defining a novel approach protocol. What we are
offering is a model for containing persistent and relational
data involving TMs. The link we refer to is a simple query
for this data, implemented by some XML parsing scripts
or, as mentioned before, databases and SQL.

Forward Association

Forward association refers to Website-to-TM data
communications. But to understand this direction, we must
again consider the WME Site Configuration Files.
Reiteratively, these files are the site-wide accommodations
for the institutionally relevant data:
• teacher_conf.xml --- A list of teachers and their

information (unique user ID, full name, login, etc).
• student_conf.xml --- A list of students and their

information (likewise to those given by teachers).

• course_conf.xml --- A list of available courses and their
information (unique course ID, name, time, location,
teacher, etc). Particularly of interest is a sub-list of
students who are enrolled.

• tm_component.xml --- The list of TMs that are docked
and ready for use (unique TM ID, location).

Although the first three files irrefutably contain rather
significant data, it is the latter file that is key simply
because without it , the site would be ignorant of any TM
hosted on the site. It should be quite noticeable that all of
the above components are identified by some unique ID.
Equipped with a means for identification, the
tm_component.xml file is able to provide the server with
the loaded TMs' locations, ultimately establishing a means
for the site to reference each TM, both as the source (for
reads) and destination (for writes). Thus, a forward link (to
read and write to and from the WME site) is enabled.
Figure 2 offers the simple concept behind this model.

FIGURE 2. The tm_component.xml File Enables Forward

Association.

 With the forward link in place, values stored in teacher,
student, and course configuration files are now outfitted
with the direction mapped by tm_component.xml . This
association allows for implementation of such interfaces as
user login and recognition which enables a slew of
applications (Administrative Page Control, for one).
Whereas the function for a forward relationship is realized,
the purpose behind a reverse association is equally
tangible.

Reverse Association

In the opposing direction, reverse association deals with
those data communications from TM to Website. A reverse
connection is necessary for TMs to acknowledge for whom
they are working (those course, teacher, student
information defined previously on the site). Similar to that
of forward associations, the data's source is given by the
main configuration file -- in the case for TMs,
tm_conf.xml . A major difference, however, is that TMs are
not allowed to write into WME Configuration Files, such
that the reverse link is only enabled for read operations. It
makes sense, after all, since TMs are a supposedly
workforce controlled by the site and not the other way
around.

 A TM's main configuration file, tm_conf.xml ,
contains the physical location of the WME Site
Configuration Files, thus acting as the sole tunnel of data
queries, as depicted in Figure 3. Data reception, however,
is asserted directly into the mapping file, tm_map.xml. We
pointed out earlier that tm_map.xml contains those values
retrieved from the server. It is also the interface between
TLPs and their custom page variables and assessment data.
Because customization and assessment data are per-class
and per-teacher, a dynamically generated TLP must know
which class and teacher it is currently being used by. Every

time a TLP is loaded, it must query for relevant
customization and assessment values. A dynamic TLP
would not be so dynamic if this information is static! The
query is issued to tm_map.xml , which asks for the location
of server configuration files from tm_conf.xml , and is
finally invoked on the appropriate files (of course, which
file to run the query for depends on the information that
the TLP is asking). Tm_map.xml then matches the
retrieved data with the abundant set of values in
tm_customization.xml and tm_assessment.xml and
depending on these values (teacher ID and course ID,
perhaps), filters the set of customization and assessment
data into those used by the TLP in question, the course,
and the teacher in which issued the invocation.

FIGURE 3. The Reverse Association.

CONCLUSION

Up to now one can argue that TMs, with some minor
adjustments, can probably be applied to any general on-
Web education. Indeed, why narrow its applications to
only mathematics education? More willingly than refuting
this argument are we to support it. If we can offer TMs the
capabilities for mathematics presentation and input, its
applications can be generalized. It could possibly support
any subject that current Web technologies can sustain
including science disciplines where mathematics will

certainly be applied. In retrospect, this seems to relate our
works of TMs to the heap of unprecedented online
Learning Management Systems such as e-Learning [9] and
WebCT [10]. But despite potential for general education,
let us not allow our initial focus of mathematics go awry.
So, the question now becomes: How do TMs support the
mathematical nature of education?

 In WME's implementation, TMs are, in essence,
composed of TLPs which will eventually be written in
MeML. Mathematics is supported within MeML in many
ways. Because it supports a mixing of itself with MathML,
mathematics display is achieved. On the other hand,
mathematical computation is handled through WME
Service invocations to services from as simple as pre-
programmed algorithms to interfacing with such computer
algebra systems as Maxima (formerly MACSYMA) [11],
Maple [12], and Mathematica [13]. But what do MeML's
mathematical components have anything to do with the
design of TMs? Well, everything. TM's notion for
customization implies that mathematical expressions can
vary due to the teacher's or course's discretion. The same
dynamic behavior applies to parameters for a
computational function perhaps, or mathematical notation
(infix, postfix, natural) and their conversions, etc. To not
only support mathematics (via MeML and MathML), but
also allow these mathematical constituents to be
customizable and interoperable is our definitive goal.

FUTURE WORK

Our persistent effort to introduce WME into classrooms is
continuous. While its current state is a mostly product
hard-coding, the migration into to the standard model for
Topic Modules has already begun. This in itself will be
assessed for robustness, scalability, and of course,
interoperability.

The technical feedback received from the pilot Website
is currently being assessed in order to further refine MeML
for handling TM requirements. The MeML processor and
MeML authoring tool must also undergo reevaluation to
reflect the updated specifications. Additionally,
subscribing MathChat [7] to the Website might implicate
TMs in ways we have not considered. A way to link topics
discussed in chat to TMs and their TLPs may be beneficial,
but whether or not accommodations for MathChat have to
be made is still being addressed.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the
National Science Foundation under Grant No. 0201772.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] Wang, P.S., Kajler, N., Zhou, Y., et al, “WME: Towards a
Web for Mathematics Education”, Proceedings of ISSAC,
ACM Press, Philadelphia PA, August 2003, pp. 258-256.

[2] Mikusa, M., Wang, P.S., Chiu, D., et al, "Web-based
Mathematics Education Pilot Project", Proceedings of ITE,
McGraw-Hill, Elizabethtown PA, September 2004 (to
appear).

[3] Wang, P.S., Zhou, Y., Zou, X., “Web-based Mathematics
Education: MeML Design and Implementation”,
Proceedings of IEEE/ITCC'2004, IEEE, Las Vegas NV,
April 2004, pp. 169-175.

[4] Wang, P.S., Kajler, N., Zhou, Y., et al, "Initial Design of a
Web-based Mathematics Education Framework",
Proceedings of IAMC'2002, Lille France.

[5] Max Froumentin,Team Contact for the Math Working
Group. MathML. www.w3c.org/Math.

[6] The World Wide Web Consortium (W3C).
http://www.w3c.org.

[7] Chiu, D., "Web-based Mathematics Education with
MathChat", Proceedings of IEEE/ITCC'2004, IEEE, Las
Vegas NV, April 2004, pp. 709-717.

[8] Chiu, D., "Design and Implementation of the MathChat
Protocol and a Model Educational Website for the WME
Framework", Master's Thesis, Department of Computer
Science, Kent State University (to appear).

[9] e-Learning Online Learning Management Systems.
http://www.elementk.com.

[10] WebCT. http://www.webct.com.
[11] Pavelle, R., Wang, P.S, "MACSYMA from F to G", Journal

of Symbolic Computation, Academic Press, vol. 1, 1985, pp.
69-100.

[12] Maple. http://www.maplesoft.com.
[13] Mathematica. http://www.wolfram.com.

