
An Approach for Interoperable and Customizable Web-based Mathematics
Education

David Chiu

Department of Computer Science and Engineering
The Ohio State University
chiud@cse.ohio-state.edu

Paul S. Wang
Department of Computer Science

Kent State University
pwang@cs.kent.edu

Abstract

Classroom trials at Kimpton Middle School
demonstrated advantages of the WME (Web-based
Mathematics Education) system and obtained positive
feedback as well as suggestions from teachers and students.
Based on the prototype site for Kimpton, an
interdisciplinary team is developing a model WME site
making it directly deployable in different schools.
Components within WME sites are interoperable and easily
customizable by teachers. Reported are the model site
design, organization, architecture and implementation.
Features that support portability, component
interoperability and easy user customization are
emphasized. These features are important in making WME
practical, efficient, and effective for mathematics
education.

1. Introduction and Background

Students in the US are falling seriously behind other
countries in mathematics tests. Furthermore,
recommendations for mathematics education by
distinguished groups of scientists and educators have been
for the most part ignored [8]. According to [10], ``The
fastest growing jobs require much higher math, language,
and reasoning abilities than current jobs, while slowly
growing jobs require less.'' It is clear that students need to
master mathematics more deeply and at higher levels than
they do at present.

The increased curricular demands on students mean
mathematics teachers are required to know more
mathematics themselves. This coupled with the push for
high stakes tests has caused shortages in highly qualified
mathematics teachers. The amount of cognitive,
organizational, and emotional work needed to be a
successful mathematics teacher, already high, is growing.
What can be done to support mathematics teachers and help
them become more efficient and productive? Can we find a
practical and effective way to use modern technology to
assist the teaching and learning of mathematics?

At the Institute for Computational Mathematics, an
interdisciplinary team of mathematicians, computer
scientists, education researchers, Web developers, and

middle school teachers is building a Web-based
Mathematics Education (WME) system by an innovative
combination of open Internet technologies.
Figure 1 illustrates the WME concept. WME can deliver,
via the Internet or a LAN (wired or wireless), classroom-
ready lessons that are well-prepared, interesting, effective,
as well as interoperable. In addition to allowing
multimedia content and hyperlinks, lesson pages feature in-
page manipulatives to help students understand and explore
mathematical concepts and skills through hands-on
activities.

Figure 1: The WME Concept

WME is different from existing approaches and aims to be
a modern, practical, efficient and effective Web-based
system to support mathematics education and learning [6].
The WME system conforms to open standards, works with
regular browsers, delivers integrated and complete lessons,
enables easy customization, provides systematic access to
client-side and server-side support, and allows
independently developed WME components to interoperate
seamlessly. In short WME seeks to create a Web for
Mathematics Education. Figure 2 (top) illustrates some of
the contents and services WME can combine and integrate
for effective Web-based mathematics education.

1.1 WME Pilot Site
With funding from the Ohio Board of Regents (OBR) the
ICM group began, in early 2004, a pilot project to study
how the WME technologies can best be tailored and
applied for actual mathematics education in schools. The
pilot project at Kimpton Middle School (Munroe Falls,
Ohio) conducted in-class trials at the 7th grade with two

mathematics teachers and over 100 students that spanned
several classes.
Experiences, feedback, and early lessons learned have been
reported in [5].

Encouraged by the positive reactions from both students
and teachers, we proceeded to build a prototype WME site
(Figure 2 top) to implement new ideas and improvements,
to teach a variety of additional topics, and to perform in-
class trials. The topics include integers, percentages,
proportions, length and area, number relations, fractions,
probabilities, and understanding data. These are some of
the topics in the Ohio Academic Content Standards [11]
which closely follows the NCTM standards [9]. These trials
have continued and are still on-going.

Figure 2: WME Integration (top), Kimpton Pilot Site
(bottom)

Component interoperability and easy customization by
teachers are among the most important features of WME.
The goal is to provide simp le download and installation of
WME sites for schools and to give teachers the ability to
modify and tailor many parts of the classroom-ready
materials to suit their own teaching needs, if necessary.
This is illustrated in Figure 3. It is furthermore possible for
teachers to publish back to the WME system their improved
lesson pages in order to share with others.

We begin by presenting the design and organization of the
WME model site, site portability, and component
independence. Then, our approach to achieve
interoperability and customization of WME components
will be described.

Figure 3: WME Site Deployment

2. WME Components and the Model Site
Design
WME interoperability aims to make many of its inner
components easily deployable into or removable from any
WME system. Our approach to supporting this
interoperability relies on hierarchically organizing WME
into self-contained components, making them maximally
independent of other components while explicitly defining
their connections and dependence on related components.
Such plug-and-play components are also made
customizable by exposing their flexibility for changes. Our
reasoning and conclusions leading to the current WME
component structure were reported in [1, 3, 4].

A complete copy of the model site is easily downloaded
and installed on any standard Web server.
Through data entry (who are the teachers, what courses are
taught, etc.), it is further refined and tailored to a particular
school. The model site contains two parts:

• Site administration and operations support---These
include

o Modifying school and WME settings
o User management
o Course management
o Topic module management
o Lesson plan management for teachers

• A detailed description of these is given in the last
section regarding customization.

• Educational content---These are organized as topic
modules (TM) under one directory. Each TM
contains a sequence of lesson pages (TLP) and each
TLP focuses on teaching a particular mathematical
concept or skill.

Figure 4: WME Component Breakdown

Following the breakdown in Figure 4, at the root of the
WME component hierarchy lays a TM. A TM is similar to
a chapter in a book. It covers a topical area (such as
integers or percentages) and includes an ordered sequence
of interactive lesson pages, or TLPs (think of these as
sections in a chapter). TM interoperability means any TM
can be installed (or removed) easily and guarantees that the
TM will work with the host site seamlessly and becomes
immediately available for teachers. There is no way to tell
the newly installed TM from the TMs already there at the
site. Of course, removal of any TM will not affect the
normal functioning of the rest of the WME site.

Similarly, a TLP is a self-contained unit that helps teach a
particular mathematical concept or skill, strengthen the
student's understanding through hands-on activities,
manipulation of tools, games, answering questions, or other
interactions within the page. From an instruction
standpoint, TLPs are non-linear. That is, a teacher can
choose where and when to use a TLP without
predetermined constraints. Each TM may come with a large
set of TLPs relating to a particular area covered by the TM
and with a suggested typical sequence of TLPs to use for
the classroom. But, a teacher can easily change the
sequence, add/remove
TLPs, or introduce a TLP from another module. TLP
interoperability states that a TLP can be dropped into a TM
at any time and its availability for use will become
immediately apparent. Removal of TLPs from a TM works
as expected.

The lowest tier is the most complex. TLPs are unit-based,
but before we venture into details, it is important to note
that TLPs are an ordered concatenation of View Sections
(VSec). A VSec controls the display visibility of page units
included in it. Through VSec's, teachers can control what
students see in real time, to focus their attention or to avoid
distractions. Currently, we have the following five types of
page units.

• Text Unit (TU) --- A single Text Unit is a block of
plain text or markup (most likely XHTML).

• Image Unit (IM) --- An Image Unit is a discrete
graphical or animated file.

• Formula Unit (FU) --- MathML code is contained
within each Formula Unit in order to display
mathematical formulas naturally and to store them
structurally.

• Question Unit (QU) --- A Question Unit provides a
set of questions to be posed for student response.

• Manipulative Unit (MU) --- A Manipulative Unit is a
hands-on exercise often designed as a game to help
communicate a mathematical concept to a student
visually and interactively. Like Question Units,
manipulatives themselves contain inner elements.
These are parameter files, that, when supplied to a
manipulative, can affect its display, computation, and
outcome. We will delve deeper into the architecture
and inner workings of manipulatives in the next
section.

The purpose of this unit organization is to make it possible
for teachers to tailor/edit TLPs in simple but important
ways including rewording, modifying mathematical
formulas, replacing certain images, adjusting parameters to
manipulatives, and adding questions in the right places on a
lesson page to collect student answers. Interoperability at
this level includes the ability to add, remove, edit, and
replace any unit in a TLP.

A direct advantage of WME interoperability is the easy
customization of components by teachers to suit their own
situations and needs. But, care must be taken because it is
unlikely that one teacher's modifications will apply well to
all others. Therefore, all customization must be recorded
per class and teacher. Later, we will discuss how
customization is achieved within WME components.

The hierarchical structure has an underlying advantage in
that, as long as component nodes are self-sufficient, they
can be added under their parent node for interoperation.
Because TMs are modules that can be dropped in and out of
any WME system, the model site anticipates a standard file
structure for TMs. Due to this sensitivity, it is without
question that their data structure must be followed
rigorously upon creation. Figure 5 illustrates the TM file
structure. Starting from the TM root directory, we see that
each TM carries its own configuration file, tm.conf.xml ,
that contains information that is read upon installation of
the TM. Information contained in this file includes its
module name, author, list of TLPs, etc. The index.php file,
img/, css/, and script/ directories are meant to contain all
necessary files of each type, thereby allowing the TM to be
self-sufficient and independent from any WME server
resources. Same can be said for the TLP directories. TLPs
themselves contain their own configuration file,
tlp.conf.xml , which contains information about the lesson
page such as which VSecs make up its content, and what
questions are attached to the VSecs. VSecs are themselves
self-sufficient and independent fro m any TM resources, and
so on for manipulatives.

Figure 5: The Topic Module File Structure

3. Manipulative Architecture and
Interoperability
Figure 6 shows a manipulative in the Dinning Out lesson
page inside the Percentages topic module. Like many other
manipulatives in WME, it is implemented in JavaScript
through the Document Object Model (DOM). We will
revisit this example time and again in order to illustrate our
approach for manipulative interoperability and
customization.

Figure 6: A Sample Manipulative

To achieve interoperability of WME manipulatives we need
to make each manipulative a self-contained program and
object instance so they are easily deployed in any TLP at
any WME site. In fact, a TLP may contain one or more
instances of the same manipulative and the same
manipulative may be deployed in multiple TLPs. The
containing Web page mu st be able to interact with any
manipulative instance through a well-defined interface.
Furthermore, each manipulative must be customizable by
teachers on a per-instance, per-course, and per-teacher
basis. We will describe how JavaScript-defined
manipulatives achieve these goals. Other types of
manipulatives can follow a similar approach.

Each manipulative is self-contained and has its own
directory for all of its files. A JavaScript source file,

MealOrder.js for example, which defines, among other
things, a constructor (MealOrder). The MealOrder.js file is
loaded into any page that will use the manipulative. To
create a manipulative instance, we call the constructor in
this way:

american = new MealOrder('american');

The first argument to the manipulative constructor is
always the variable name in JavaScript that holds the
instance created. If a second argument is supplied, then it
must be an associative array of name-value pairs.
A manipulative instance, such as american, is deployed in a
Web page by the code

<div class="manipulative" id="manip1">
 <script type="text/javascript">
 american.deploy("manip1");
 </script>
</div>

In this example, manip1 is the element id of the <div>
element where the manipulative is deployed on the page.
The class attribute manipulative allows us to set up CSS
style rules for consistently rendering all manipulatives and
easily customizing the style for different WME sites. Each
manipulative must define these instance methods:

• reset()---Re-initializes the manipulative instance.
• getArg(name)---Returns the value of the named

parameter.
• getArgs()---Returns an associative array of the

values of all parameters (in the same form as the
array used to call the constructor).

• setArg(name, value)---Sets the named parameter to
the given value.

• getProperties()---Returns an associative array of the
values of all instance properties made accessible.

• getProperty(name)---Returns the named instance
property. For example, total (the total amount of the
bill) is an instance property of a MealOrder instance.

Such instance methods can be accessed from anywhere in a
Web page for interaction with the manipulative. For
example, immediately after the american manipulative, the
dinning out TLP presents several questions based on the
meal order. Figure 7 shows one such question.

Figure 7: Manipulatived-Based Question

The 50% part in the question is customizable by the teacher
so a different percentage can be used. Its source code is in
this form.

<span class="pageparameter"
 id="labor_percent">50

This editable percentage value and the menu order total are
automatically passed to the answer checker via the code

american.getProperty('total')

document.getElementById('labor_percent').fir
stChild.nodeValue

This architecture allows a manipulative to be easily
deployed in another TLP or moved to a different WME site.

4. Manipulative Customization Support
A WME manipulative is made customizable by allowing
settable parameters to be passed to its constructor.
Therefore, manipulatives can be programmed with much
flexibility and generality making them applicable in many
more situations. For example, we can make another
MealOrder instance that displays an Italian menu (Figure
8) by passing to the constructor a menu and a picture as
indicated by the following JavaScript code:

m = {

'Italian Wedding Soup': 2.25,
'Caesar Salad': 3.45,

 'Macaroni and Cheese': 3.45,
 'spaghetti with Meat Balls': 4.65,
 'Tiramisu': 2.95
};

im = "Italian_Waiter.png";
p = {'menu': m, 'image': im};
italian = new MealOrder('italian', p);

Figure 8: A Customized Manipulative

WME developers (programmers) find such customizations
powerful and convenient already. Yet, we still need to
allow teachers to customize manipulatives using an easy
GUI tool we are developing. The manipulative architecture
must support user-level customization as well.

Each manipulative provides these static (class-wide)
properties to help usage and customization:

• instances---Is an array of ids (strings) for all existing
instances.

• displayType---Is either "block" or "inline".
• location---Gives manipulative directory location

relative to site root.
• document---Is a text string providing a brief API

documentation.
• help()---Returns a string for end-user help.
• help("topic")---Returns a string for end-user help

relating to the given topic.
• defaultArgs---Is an associative array for the default

arguments when the constructor is called with no
args.

• An argument description file in XML---Provides
information on parameter name, meaning, allowable
values, to help provide end-user customization of
constructor arguments. We describe this XML file
next, and how it is used to provide manipulative
customization on a per instance, class, and teacher
basis in the next section.

5. User Customization of WME
On a school-wide scope, every school will have different
grade levels, teachers, and even curricula. WME allows
these settings to be made on a per-school basis. Another
type of customization involves teachers' adjustments to
their lesson plans and pages. This section gives an
overview of the dual levels of WME customization.

5.1 Level 1 Customization: School-wide
Administration
Information that varies across schools is unavoidable. This
means that WME must be able to be tailored to every
school on this level. In WME sites, there are three types of
users: administrator, teacher, and student. Administrators
have full control over the WME site. They are allowed the
following actions:

• School Settings --- Modify school-specific data such
as street address, picture/logo, etc.

• WME Site Settings --- Modify WME site
configuration such as database connectivity
information.

• Grade Level Management --- Add/Delete/Modify
grade levels in this school (e.g. in Kimpton Middle
School, we have only 7th and 8th grade levels).

• User Management --- Add/Delete/Modify user
accounts. Grant users teacher or even administrator
statuses.

• Course Management --- Add/Delete/Modify courses.
Constitute what course is to be taught at which grade
level and who is to be teaching it.

• Topic Module Management --- Install/Delete TMs
for teachers to use in their classes. Administrators,
however, have no control over the customization of
these modules.

Upon installation of the WME model site, a user account,
root, is provided. This account is simply for administrators
to initiate site settings, and after creation of administrative
account, it is recommended that this account be deleted.
Like any other system, user accounts with administrative
status should be treated with care, because any
administrator can compromise the entire site's operation.

5.2 Level 2 Customization: Lesson
Management
This level of customization is available only to teachers. In
order to expose Level 2 customization in the WME site, the
administrators will have already created teacher accounts,
grade levels, courses, and installed TMs and TLPs that
came with the site. When these are done, the teacher, upon
login, will be taken to their administrative area for lesson
management. After selecting which course to manage, the
teacher can decide which TM to use for that course. At this
point the TM will contain original copies of TLPs, and the
teacher may decide to use them as-is, or to customize any
selected TLPs.

5.2.1 TM Customization
Inside each TM, a teacher can pick and choose from the
available TLPs and decide on their sequencing. Thus, the
resulting TM will contain only the TLPs picked by the
particular teacher and in the desired sequence for teaching
the particular class at hand.

Figure 9 (top) shows the TM customization interface for the
Statistics module. The TLPs will be listed in the
customized TM by the integers their left. To remove a TLP,
simply leave the sequence number blank. By following any
of the TLP links on the list, the user is transferred to the
TLP customization interface.

5.2.2 TLP Customization
After deciding the TLP ordering and usage, the teacher can
further customize its content. In the TLP customization
interface, a teacher can add content, reword text, reorder
and hide VSecs, manage and pose questions, and customize
any manipulatives that are instantiated inside the TLP.
Figure 9 (bottom) displays a portion of the TLP
customization interface. The VSecs (marked by the dark
grey dividers) can be reordered, made hidden (or visible) in
a TLP.

The modifications by teachers are stored in a per-WME-site
database and are dynamically applied to the TLP or TM
delivered depending on the teacher and class designations
of the user (teacher or student). We use PHP and MySQL
for our current sites. But the WME site design does not
depend on these particular technologies.

Going even further into page content customization is
controlling in-page manipulatives. In the following, we first

discuss how manipulative customization is supported, then
its interface for editing.

Figure 9: TM Customization Interface (top), TLP
Customization Interface (bottom)

5.2.3 Manipulative Customization with MPXML
A manipulative's display and inner computation can be
altered on a per-object instance basis by passing various
parameters to its constructor. The modified parameter
values must be recorded in the site database.
At first, a general colon delimited format was considered
for storing these values, but it proves to be not generalized
enough. We then begin to consider an XML-defined
structure for the job. Other XML applications that can be
used to describe source code and parameter data include
srcML [2] and WSDL [7], but these seems to be an overkill
for our simple purpose of editing and storing manipulative
parameter values.

Thus, we developed the MPXML system (Manipulative
Parameters XML). This package includes:

• The MPXML Specification --- Used to describe
manipulative parameters in a way that is generalized
and independent from programming languages. Upon
manipulative deployment, these values are read and
used to instantiate the object instance.

• Two-Way JavaScript Translator --- Because
MPXML is programming language independent, a
parser must be written to tailor to the language of
choice (in our case, JavaScript). This two-way parser
takes JavaScript code and constructs an MPXML,
and in the other direction, takes MPXML data and
builds the JavaScript constructor call.

The MPXML definition is straightfoward:
<manip_params>
 <!-- The parameter is always an
 associative array -->
 <param type="array">
 ...
 <!-- There can be mixed types within
 the array -->
 <param type="string"> ... </param>
 ...
 </param>
</manip_params>

It is important note here that the <param> element observes
more complexity. Its full specification can be found at
http://wme.cs.kent.edu/help/docs. Below, the MPXML
description to render the MealObject manipulative that we
have been following into an Italian menu:

<manip_params>
 <param type="array">
 <name>
 <canonical>p</canonical>
 <contextual>
 Manipulative
 Parameters
 </contextual>
 </name>
 <items><!-- first item is the menu -->
 <pair>
 <key> <value>menu</value> </key>
 <param type="array">
 <!-- The parameter, m, is an
 associative array of
 menu items as keys with their
 respective prices as
 values -->
 <name>
 <contextual>
 Menu Items
 </contextual>
 </name>
 <items>
 <!-- First item on menu -->
 <pair>
 <key>
 <value>
 Italian Wedding Soup
 </value>
 </key>
 <param type="double">
 <name>
 <contextual>Price</contextual>
 </name>
 <value>2.25</value>

 </param>
 </pair>
 <!-- Second item on menu -->
 <pair> . . . </pair>
 . . .
 <!-- More items not listed here -->
 </items>
 </param>
 </pair>

 <!-- second parameter, the image -->
 <pair>
 <key> <value>image</value> </key>
 <param type="string">
 <name>
 <contextual>
 Image to be used
 </contextual>
 </name>
 <value> Italian_Waiter.png </value>
 </param>
 </pair>

 <!-- end of associative array -->
 </items>

 <!-- end of parameter definition -->
 </param>
</manip_params>

The above will be translated into the equivalent JavaScript
just after Figure 8. Note also that nowhere in the MPXML
specification was the first parameter, italian declared. This
is because the first parameter is always implied as the
instance variable, which we already know upon
instantiation.

The same procedures follow for American meal or any
other meal menu that is created by a teacher or another
source. As long as the parameter values in the MPXML file
are set properly (and this is ensured by the MPXML GUI,
which we discuss next), the manipulative will be able to
generate customized styles and content for each instance.
Figure 10 illustrates the process of deploying a
manipulative to a TLP.

Figure 10: Manipulative Deployment

In order to abate complex workload and guarantee that a
valid MPXML and JavaScript constructor call is generated,
we cannot leave this task to teachers. We created an
intuitive user interface reads the corresponding MPXML
file, displays the parameters that can be rewritten, and
allows the user to input new values. Before saving, the user
has the option of previewing and discarding the values.
After commitment to the values, a new MPXML file is
written, and the manipulative is reconfigured for this
teacher's lesson page only.

Figure 11: Decisions and Process Involved in
Customizing a Manipulative

Figure 11 illustrates the process that the WME site takes
during a manipulative modification, and Figure 12 shows
the MPXML user interface.

Figure 12: Manipulative Customization Interface

6. Summary and Future Work
Work reported here is part of the team effort by the WME
group at ICM/Kent to create a practical, efficient and
effective Web-based system to help teachers and students
better teach and learn mathematics. Among the

distinguishing features of WME are interactive and
classroom-ready lessons, easy customization by schools
and teachers, and interoperable (plug-and-play) educational
components. The goal is to create a Web for Mathematics
Education that can grow exponentially by enabling many
experts and educators to freely contribute to the WME
system.

The 1) model site design, 2) the structure, organization and
interoperability of components, and 3) the support for easy
authoring and publishing of TMs and TLPs by teachers will
continue to evolve and refine. Two main tracks of work can
be identified: WME systems R&D and educational content
and methodology research and evaluation . The two go
hand-in-hand as we continue to drive WME forward.

Through extensive cooperation among an interdisciplinary
team and by more extensive classroom trials, we hope to
further develop WME to increase its usefulness, usability,
and practicality.

7. Acknowledgments
This materia l is based upon work supported in part by the
National Science Foundation under Grant No. 0201772.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

[1] Wei Su, Lian Li, and Paul S. Wang. "Lesson Page
Structure and Customization in WME," Proceedings of the
2005 IAMC Workshop, Beijing, China, July 24 2005.

[2] Collard, M.L., Maletic, J.I., Marcus, A. "Supporting
Document and Data Views of Source Code" Proceedings of
the 2nd ACM Symposium on Document Engineering
(DocEng’02), McLean, VA , November 8-9, pp. 34-41.

[3] David Chiu. "WME Site Organization and
Customization Support," Proceedings of the 2004
Conference on Information Technology in Education
(ITE'04), Elizabethtown College, Elizabethtown, PA,
September 18, 2004.

[4] David Chiu. " Customization and Interoperability in
WME," Proceedings of the IEEE Southeast Conference,
IEEE, Ft. Lauderdale, FL, April 8-10 2005, pp. 636-640.

[5] Michael Mikusa, Paul S. Wang, David Chiu, Xun Lai,
Xiao Zou. "Web-based Mathematics Education Pilot
Project," Conference on Information Technology in
Education, Elizabethtown College Elizabethtown, PA,
September 18, 2004.

[6] Paul S. Wang, M. Mikusa, S. Al-shomrani, D. Chiu, X.
Lai, and X. Zou. "Features and Advantages of WME: A
Web-based Mathematics Education System," Proceedings,
IEEE SoutheastCon, Fort Lauderdale, Florida, April 2005,
pp. 621-629.

[7] Hugo Haas, Team Contact for the Web Services
Description Working Group. WSDL. www.w3.org/TR/wsdl.

[8] The National Commission on Mathematics and Science
Teaching for the 21st Century. "Before It's Too Late: A
Report to the Nation,"
www.ed.gov/inits/Math/glenn/index.html , 2000.

[9] National Council of Teachers of Mathematics.
Principles and Standards for School Mathematics,
www.nctm.org/standards, Reston, Va., 2000.

[10] National Research Council. " Everybody Counts: A
Report to the Nation on the Future of Mathematics
Education", National Academies Press, Washington, D.C.,
ISBN: 0309039770,
http://books.nap.edu/book s/0309039770/html/index.html ,
May 1989.

[11] Center for Curriculum and Assessment. Academic
Content Standards: K-12 Mathematics, Ohio Department of
Education, Feb. 2002.

