IAMC Framework
Architecture and Prototyping
A Progress Report

P. Wang, S. Gray, N. Kajler, D. Lin, W. Liao, X. Zou
Contents

- IAMC Framework goals
- Architecture overview
- Dragonfly – an IAMC client prototype
- MCP – mathematical computation protocol
- MathML/Graph
- Starfish – an IAMC server prototype
- External engine interface
- Web accessibility
- Further work
The IAMC framework is an effort to establish a protocol-based, platform, programming language, and mathematical encoding independent, solution for serving mathematical computation over the Web/Internet.

- To make math-oriented data and services easily and widely accessible on the Internet in many contexts – directly, via the Web, by email, for distance learning, etc.

- To support interactive use of user-designated remote compute servers.

- To provide efficient and effective communication of mathematical data over the Internet.

- To allow exchange and further processing of computational results among different compute servers.
IAMC Framework Components

1. IAMC client — An end-user agent for accessing services provided by any IAMC server.

2. IAMC server — A program to provide mathematical computation powers through the MCP protocol.

3. Protocol — An effective request-response protocol to link clients and servers and to support one-time transactions and interactive sessions.

4. Mathematical Data Encoding — Standard and user-defined mathematical data encodings can be used.

5. External Engine Interface (EEI) — A specification and API implementation for binding compute engines to IAMC servers.
Dragonfly Functionalities

- Connect to and communicate with any user-specified IAMC server via the MCP protocol.
- Obtain capability and usage documentation from the IAMC server and make them available to the user.
- Receive computational, control and help commands from the user and send them to the server.
- Parse infix mathematical expressions entered by the user.
- Receive results from the server.
- Display mathematical symbols and expressions in textbook-like fashion.
Select subexpressions with the mouse.

Save mathematical results in files under well-defined formats such as MP, MathML, and OpenMath.

Plot mathematical curves and surfaces.

Present command templates from the server to the user when requested.

Display server dialog and relay user data thus obtained back to the server.

Encode/decode mathematical and graphical data.
Dragonfly Implementation

- Written in Java
- Swing to implement the GUI and the HTML-based help facility.
- Java 2D to support 2-dimensional and 3-dimensional mathematical function plotting and manipulation.
- WebEQ to render mathematical expressions in MathML presentation code.
- XML to help encode/decode graphing data.
Example: integration(sin(x),x,0,pi/2)

Integrate(, integrand f(x)

, variable x

, lower limit a

) upper limit b

Clear Fields Enter Command
The MCP Protocol

- One-time requests and persistent computation sessions.
- No restrictions on content types or mathematical encodings.
- Supporting the special needs of mathematical computations.
- Permitting both server and client to send requests and to return responses.
- Both synchronous and asynchronous message exchanges.
- Distinguishing protocol control from computation control.
- Simple, effective, and extensible.
MCP Message Classes

- **Initialization** — The initialization class supports session creation and configuration right after client-server connection.

- **Control** — The control class supplies MCP protocol control and management methods for both the client and server side.

- **Computation** — A class of server-side operations to perform application supported computations.

- **Dialog** — A class of client-side methods to solicit information from the end user.
Initialization Message

Request Initialization S1
Method: canDo
Version: MCP/1.0
Server-name: PolyFactor
Content-length: 128

"Calculus"=integrate diff taylor...
"Linear Algebra"=vector matrix determinant ...
"Complex Analysis"=absValue conjugate realPart ...

Response Initialization S1 100 OK

"Area_name"=command1 command2 ...
IAMC Framework is Mathematical data encoding neutral. The Dragonfly-Starfish prototype knows about infix, MathML, and MP.

1. Dragonfly parses infix input into MathML content encoding.
2. MathML content data is sent through MCP with automatic MP compression/decompression.
3. Starfish sends MathML content encoding to a compute engine.
4. Starfish receives MathML content and/or MathML presentation result from engine driver.
5. Starfish sends the result back to the Icl via MCP.
6. MathML (presentation) is rendered for end-user.
Graphing tags for:

\[y = \cos(x), \quad 0 \leq x \leq \pi \]

```xml
<mathGraph name="mycosine"
    type=rectangular
    dimension=2 plotcolor=black
    bgcolor=white>
    <equations type=normal>
        <apply>
            <eq/> <ci>y</ci>
            <apply>
                <cos/> <ci>x</ci>
            </apply>
        </apply>
    </equations>
</mathGraph>
```
<range>
 <var type=independent> <ci> x </ci> </var>
 <lower> <cn type="integer">0</cn> </lower>
 <upper> <apply> <times/>
 <cn type="integer">2</cn>
 <ci type="constant">\pi;</ci>
 </apply>
</upper>
</range>

...
<coordinates type="rectangular" dim="2"
 valuetype="float"
 point="x,y" points=40>
 <cn type="integer">0</cn>
 <cn type="integer">1</cn>
 <cn>0.16041128085776021</cn>
 <cn>0.98716167535309518</cn>
 ...
</coordinates>
</mathGraph>
Server Prototype: Starfish

iamc://host:port/isv_name

- Be MCP compliant and easily customizable.
- Maintain and manage computation sessions.
- Launch/control external compute engines dynamically.
- Support synchronous/asynchronous calls, callbacks, and client-generated interrupts.
- Supply server administrative functions.
- Allow plug-in modules for extensibility.
External Engine Interface

- perform initializations before receiving user commands. Usually, the initialization sets up the input/output modes, processes customization/configuration parameters, etc.

- execute in several different modes such as normal mode and debug mode.

- send a prompt when it is ready for input. Different compute engines use different prompts. The prompt also indicate the current engine status/mode.

- require a terminating character for each command.

- return a result or an error message for a command. Results may
contain text, mathematical expressions, and graphics. The beginning and end of the result are well-defined.

- ask for extra information from the user in order to complete a particular computation.
- support several types of user-generated interrupts.
- keep track of commands and results in generated variables.
- supply help and documentation information directly or from some other source.
IAMC Prototyping Structure

- Dragonfly
- MCP
- DriverManager
- Starfish
- Maxima
- Maxima JEEI Driver
Dragonfly is a stand-alone application. Ways to access an IAMC Framework client from the Web:

- An IAMC-aware browser may launch its IAMC helper (Dragonfly) when following an IAMC URL.
- A Web server-side content type

```
Content-Type: application/x-iamcurl
```

...can launch a user-configured client.
- Converting Dragonfly into a browser plug-in will help embed interactive computations within Web pages.

- Library modules can be developed to enable Web server-side programs to function as compact IAMC clients and easily request and obtain mathematical results from IAMC servers.
Further Work

- XML implementation of MathML/Graph
- an extensible mathematical expression encoding converter
- Converting Dragonfly into a valid plug-in to be used with Netscape
- Creating a large collection of reusable Java classes covering all aspects of the IAMC implementation
- Supporting the rapid development of clients, servers and external engine interfaces.
- Collaborating with many people from all parts of the world.